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Abstract

The first part of this dissertation is focused on the generalization or extension of the re-
sults of W. Fechner and E. Gselmann (Publ. Math. Debrecen 80/1-2 (2012), 143-154, https:
//doi.org/10.5486/PMD.2012.4970) into new classes of functional equations and determining
their solutions. Since no regularity is assumed, it turns out that under some mild assumptions
on the parameters involved, the pairs of functions satisfying the new classes of functional equa-
tions are polynomial functions and, in some crucial cases, just the usual polynomials. The idea
to study these generalized equations was motivated by the growing number of its particular
forms studied by some mathematicians.

Several mathematicians attempted to solve equations characterizing the polynomial functions
of restricted domains; therefore, in this spirit, this dissertation’s second part focuses on finding
the local polynomial functions stemming from these new classes of functional equations.

Finally, we develop a robust computer code based on the obtained theoretical results to de-
termine the polynomial solutions of these generalized equations. The primary motivation for
writing such a computer code is that solving even simple equations belonging to these classes
needs long and tiresome calculations. Therefore, one of the advantages of such a computer code
is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally,
the computer code will significantly improve the level of accuracy in calculations. Along with
that, there is also the factor of speed. We point out that the computer code will operate with
symbolic calculations provided by the Python programming language, which means that it
does not contain any numerical or approximate methods, and it yields the exact solutions of
the equations considered. We acknowledge that some mathematicians have previously consid-
ered using computer codes to solve functional equations. However, In their works, they used
Maple as the programming tool to obtain their results which is less flexible in usage and con-
stitutes only a small portion of the academic research community; whereas, in our work, we
achieved our results using Python programming language, designed to be an easily readable,
highly versatile, general-purpose, open-source, avails robustness and facilitates the deployment
of theorems into computational and symbolic frameworks.

Keywords: Functional equations, Polynomial functions, Absolutely convex sets, Algebraic in-
terior, Fréchet operator, Monomial functions, Continuity of monomial functions, Computer
assisted methods, Python, Sagemath.
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Streszczenie

Pierwsza część rozprawy koncentruje się na uogólnieniu lub rozszerzeniu wyników W. Fechnera i
E. Gselmann (Publ. Math. Debrecen 80/1-2 (2012), 143-154, https://doi.org/10.5486/PMD.
2012.4970) na nowe klasy równań funkcyjnych i wyznaczanie ich rozwiązań. Ponieważ nie za-
kłada się żadnej regularności, okazuje się, że przy pewnych łagodnych założeniach dotyczących
parametrów pary funkcji spełniające nowe klasy równań funkcyjnych są funkcjami wielomi-
anowymi, a w niekórych kluczowych przypadkach zwykłymi wielomianami. Pomysł zbadania
tych uogólnionych równań był motywowany rosnącą liczbą jego poszczególnych form badanych
przez niektórych matematyków.

Kilkoro matematyków próbowało rozwiązać równania charakteryzujące funkcje wielomianowe
na dziedzinach ograniczonych; dlatego w tym duchu druga część rozprawy koncentruje się
na znalezieniu lokalnych funkcji wielomianowych wynikających z tych nowych klas równań
funkcyjnych.

Na koniec opracowujemy solidny kod komputerowy oparty na uzyskanych wynikach teorety-
cznych w celu określenia wielomianowych rozwiązań tych uogólnionych równań. Główną mo-
tywacją do napisania takiego kodu komputerowego jest to, że rozwiązanie nawet prostych
równań należących do tych klas wymaga długich i męczących obliczeń. Dlatego jedną z zalet
takiego kodu komputerowego jest to, że pozwala nam szybko, łatwo i skutecznie rozwiązywać
skomplikowane problemy. Dodatkowo kod komputerowy znacznie poprawia poziom dokład-
ności obliczeń. Do tego dochodzi czynnik prędkości. Zwracamy uwagę, że kod komputerowy
będzie operował obliczeniami symbolicznymi zapewnianymi przez język programowania Python,
co oznacza, że nie zawiera żadnych metod numerycznych ani przybliżonych i daje dokładne
rozwiązania rozważanych równań. Przyznajemy, że niektórzy matematycy rozważali wcześniej
użycie kodów komputerowych do rozwiązywania równań funkcyjnych. Jednak w swoich pracach
wykorzystali Maple jako narzędzie programistyczne do uzyskania wyników. Maple jest mniej
elastyczny w użyciu i stanowi tylko niewielką część akademickiej społeczności naukowej. Mając
na uwadze, że w naszej pracy osiągnęliśmy nasze wyniki przy użyciu języka programowania
Python, zaprojektowanego tak, aby był łatwo czytelnym, wysoce wszechstronnym, otwartym
kodem źródłowym ogólnego przeznaczenia, zapewniającym solidność i ułatwiającym wdrażanie
twierdzeń w kontekście obliczeniowym i symbolicznym.

Słowa kluczowe: Równania funkcyjne, Funkcje wielomianowe, Zbiory absolutnie wypukłe,
Wnętrze algebraiczne, Operator Frécheta, Funkcje jednomianowe, Ciągłość funkcji jednomi-
anowych, Wspomaganie komputerowe metody, Python, Sagemath.
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Chapter 1

Introduction

The classical result of L. Székelyhidi states that (under some assumptions) every solution of a
general linear equation must be a polynomial function. It is known that Székelyhidi’s result may
be generalized to equations where some occurrences of the unknown functions are multiplied
by a linear combination of the variables. In this dissertation, we study the equations where
two such combinations appear. The simplest nontrivial example of such a case is given by the
equation

F (x+ y)− F (x)− F (y) = xf(y) + yf(x). (1.0.1)

considered by W. Fechner and E. Gselmann in [11]. This dissertation is inspired by equation
(1.0.1), where the first part of this dissertation is devoted mainly to finding the solutions to
the various generalized forms of equation (1.0.1); that is, we find the solutions of the following
functional equations;

n∑
i=1

γiF (aix+ biy) = yf(x) + xf(y), (1.0.2)

F (x+ y)− F (x)− F (y) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy), (1.0.3)

and
n∑
i=1

γiF (aix+ biy) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy), (1.0.4)

for every x, y ∈ R, γi, αj, βj ∈ R, ai, bi, cj, dj ∈ Q, and its special forms. Despite the fact that
no regularity is assumed, it turns out that under some mild assumptions on the parameters
involved, the pair (F, f) solving equations (1.0.2), (1.0.3) and (1.0.4) happens to be a pair
of polynomial functions and in some crucial cases just the usual polynomials. The idea to
study these generalized equations was motivated by the growing number of its particular forms
studied by several mathematicians; let us quote here a few of them J. Aczél [1], J. Aczél and
M. Kuczma [2], C. Alsina, M. Sablik, and J. Sikorska [4], W. Fechner and E. Gselmann [11],
B. Koclȩga-Kulpa, T. Szostok and S. Wa̧sowicz [18], [19] and [20]. From their studies, it turns
out that these particular forms have real applications. The first of the special forms of (1.0.4)
we solved is the functional equation considered by B. Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz
in [19] namely,

F (x)− F (y) = (x− y)[α1f(c1x+ d1y) + · · ·+ αmf(cmx+ dmy)]. (1.0.5)

It is worth noting that (1.0.5) stems from a well known quadrature rule used in numerical
analysis. Further, we also considered other special forms of (1.0.4) namely,

F (y)− F (x) =
1

y − x

∫ y

x
f(t) dt = (y − x)

m∑
j=1

βjf(cjx+ (1− cj)y), (1.0.6)

1
7:7687352352



F (y)− F (x) = (y − x)f(x+ y), (1.0.7)

F (x)− F (y) = (x− y)f
(
x+y
2

)
, (1.0.8)

and
2F (y)− 2F (x) = (y − x)

(
f
(
x+y
2

)
+ f(x)+f(y)

2

)
. (1.0.9)

Equation (1.0.6) is the functional equation connected with the Hermite-Hadamard inequality
in the class of continuous functions, and it is related to the approximate integration. Note that
the quadrature rules of an approximate integration can be obtained by the appropriate spec-
ification of the coefficients of (1.0.6). Moreso, equations (1.0.7) and (1.0.8) are the functional
equations considered by J. Aczél in [1] and J. Aczél and M. Kuczma in [2] respectively, which
are variations of Lagrange mean value theorem with many applications in mathematical anal-
ysis, computational mathematics, and other fields. Equation (1.0.9) stems from the descriptive
geometry problem considered by C. Alsina, M. Sablik, and J. Sikorska in [4] used for graphical
constructions. Now observe that equations (1.0.2), (1.0.3), and (1.0.4) are an obvious general-
ization of the equation considered by W. Fechner and E. Gselmann in [11] given by equation
(1.0.1).

Several mathematicians attempted to solve equations characterizing the polynomial func-
tions of restricted domains, see, e.g., J. Ger ([13]) or Z. Daróczy and Gy. Maksa ([9]), therefore
in this spirit, the second part of this dissertation is focused on finding the local polynomial
functions stemming from equations (1.0.1) and (1.0.4), namely;

F̃
(
x+ y

2

)
− F̃

(
x

2

)
− F̃

(
y

2

)
= xf(y) + yf(x), (1.0.10)

and
n∑
i=1

γiF (λix+ (1− λi)y) =
m∑
j=1

θj(αjx+ (1− αj)y)f(βjx+ (1− βj)y), (1.0.11)

for every x, y ∈ K ⊂ X-a linear space over a field K ⊂ R, K being a K-convex subset of X,
γi, θj ∈ K, and λi, αj, βj,∈ [0, 1] ∩K, i = 1, · · · , n, j = 1, · · · ,m. In addition, we would use our
method to solve the functional equation considered by J Ger in [13], in particular

f(x)− f(y) = (x− y)
[
h
(
x+ y

2

)
+ k(x) + k(y)

]
(1.0.12)

where f, h, k : I → R are unknown and I ⊂ R is a non-empty interval, for all x, y ∈ I. Finally,
we will develop a robust computer code based on the obtained theoretical results to determine
the polynomial solutions of equation (1.0.4) and its special forms. The primary motivation for
writing such a computer code is that solving even simple equations belonging to class (1.0.4)
needs long and tiresome calculations. Therefore, one of the advantages of such a computer code
is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally,
the computer code will significantly improve the level of accuracy in calculations. Along with
that, there is also the factor of speed. We point out that the computer code will operate with
symbolic calculations provided by Python programming language, which means that it does not
contain any numerical or approximate methods, and it yields the exact solutions of the equa-
tions considered. We acknowledge that some mathematicians have previously considered using
computer codes to solve functional equations. We mention here some of them, S. Baják and Z.
Páles [5], and [6], G.G. Borus and A. Gilányi [7], A. Házy [16], and [17], and C.P. Okeke and
M. Sablik [28]. In their works, they used Maple as the programming tool to obtain their results
which is less flexible in usage and constitutes only a small portion of the academic research
community; however, in our work, we achieved our results using Python programming language,
designed to be an easily readable, highly versatile, general-purpose, open-source, avails robust-
ness and facilitates the deployment of theorems into computational and symbolic frameworks.
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Chapter 2

Preliminaries

In this chapter, we begin by presenting some basic definitions.

2.1 Polynomial functions

The history of polynomial functions goes back to the year 1909 when the paper by M. Fréchet
[12] appeared. Let G,H be abelian groups (for some results concerning the noncommutative
case see the papers of J. Almira and E. Shulman [3] and E. Shulman [34]) and let f : G → H
be a given function. The Fréchet operator (difference operator) ∆h with span h ∈ G is defined
by

∆hf(x) := f(x+ h)− f(x)

and ∆n
h is defined recursively

∆0hf := f, ∆n+1
h f := ∆h(∆n

hf) = ∆h ◦∆n
hf, n ∈ N.

Using this operator, polynomial functions are defined in the following way.

Definition 2.1.1. Fix a nonnegative integer n, and let (G,+) and (H,+) be groups. We say
that a function f : G→ H satisfies the Fréchet equation (of order n) if, and only if

∆n+1
yn+1,...,y1

f(x) = 0, (2.1.1)

for all y1, . . . , yn+1, x ∈ G. We say that any solution to (2.1.1) is a polynomial function of order
at most n.

Polynomial functions are sometimes called generalized polynomials. The shape of solutions
of this equation was obtained in various situations among others by S. Mazur and W. Orlicz
[23], G. Van der Lijn [37] and D. Z. Doković [10]. To describe the form of polynomial functions
we need the notion of multiadditive functions. A function An : Gn → H is n−additive if and
only if for every i ∈ {1, 2, . . . , n} and for all x1, . . . , xn, yi ∈ G we have

An(x1, . . . ,xi−1, xi + yi, xi+1, . . . , xn)
= An(x1, . . . , xi−1, xi, xi+1, . . . , xn) + An(x1, . . . , xi−1, yi, xi+1, . . . , xn).

Further, for a function An : Gn → H, the diagonalization A∗n is defined by

A∗n(x) := An (x, · · · , x)︸ ︷︷ ︸
n times

.

4
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Definition 2.1.2. A function A : G −→ H is called additive if and only if it satisfies the
Cauchy’s functional equation i.e.

A(x+ y) = A(x) + A(y) (2.1.2)

for all x, y ∈ G.

Theorem 2.1.1. If A : G −→ H satisfies (2.1.2), then A(λx) = λA(x) for every x ∈ G andλ ∈
Q.

Proof. For x = y = 0 we get from (2.1.2), A(0) = 0. Now we show by induction that A(λx) =
λA(x) for λ ∈ N, x ∈ G. Obviously the above formula holds for λ = 1. Assume that (2.1.2)
holds for some λ ∈ N then we have from induction assumption and additivity of A that,

A((λ+ 1)x) = A(x+ λx) = A(x) + A(λx)
= A(x) + λA(x) = (λ+ 1)A(x)

whence, setting in (2.1.2) y = −x, we obtain

0 = A(0) = A(x− x) = A(x) + A(−x)
A(−x) = −A(x)

Therefore we’ve, A(λx) = λA(x) for λ ∈ Z, x ∈ G. Now, since an arbitrary λ ∈ Q may be
written as λ = p

q
,where p ∈ Z, q ∈ N, hence px = q(λx) and so, by what already has been

proved,
pA(x) = A(px) = A(q(λx)) = qA(λx),

so,
p
q
A(x) = A(λx)

hence,
λA(x) = p

q
A(x) = A(λx)

for everyx ∈ G andλ ∈ Q.
Remark 2.1.1. Take G = H = R, any continuous additive function A : R→ R is of the form

A(x) = cx, x ∈ R (2.1.3)

where c ∈ R is a constant.

Now, we present the characterization of polynomial functions.

Theorem 2.1.2. (cf. Theorem 9.1 in [35]) Let (G,+) be a commutative semigroup with identity,
let (H,+) be a commutative group and let n be a nonnegative integer. Moreover, assume that
H is uniquely divisible by n!. Then f : G→ H is a solution of (2.1.1) if and only if it has the
form

f(x) =
n∑
k=0

A∗k(x), (2.1.4)

for all x ∈ G where A∗k, k ∈ {0, · · · , n}, are diagonalizations of k-additive symmetric functions
Ak : Gk → H.

In the case of G = H = R, we obtain the following

Corollary 2.1.1. (cf. Corollary 1.1 in [27] and [29]) Let n be a nonnegative integer. Then
f : R→ R is a continuous solution of (2.1.1) if and only if it has the form

f(x) =
n∑
k=0

akx
k, (2.1.5)

where ak, k ∈ {0, · · · , n}, are some real constants.

In other words, a continuous real solution of (2.1.1) is an ordinary polynomial. Next, we define
a polynomial function on a restricted domain.

5
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2.2 Locally polynomial functions

Definition 2.2.1. (cf. Definition 1.1 in [29]) Suppose that X, Y are linear spaces over a field
K ⊂ R, let K be a non-empty subset of X. A map f : K −→ Y is called a locally polynomial
function of degree at most n on K, if

∆n+1
y1,...,yn+1

f(x) = 0,

holds for every x, yi ∈ X such that x+
∑
i∈Z

yi ∈ K, Z ⊂ {1, · · · , n+ 1}.

We will work on absolutely convex (convex and balanced) sets with non-empty algebraic in-
teriors to obtain the local solutions. Let us remind the definition of an algebraic interior and
absolutely convex sets.

Definition 2.2.2. (cf. Definition 1.2 in [29]) Let K ⊂ X-a linear space over a field K ⊂ R.
The algebraic interior of the set K is the set

algintK = {y ∈ K :
∧
x∈X

∨
ε>0

∧
α∈(−ε,ε)∩K

(αx+ y ∈ K)}

Definition 2.2.3. (cf. Definition 1.3 in [29]) Let K ⊂ X-a linear space over a field K ⊂ R.
The set K is said to be absolutely convex if it is convex and balanced, i.e.∧

α∈K
(|α| ¬ 1 =⇒ αK ⊂ K) .

Now, let us present a lemma which follows easily from the well known properties of absolutely
convex sets (cf. [21] and [40]). We admit the following definitions

(i) I := {(α, β) ∈ K×K : |α|+ |β| ¬ 1},

(ii) I0 := {(α, β) ∈ I : β 6= 0}.

Lemma 2.2.1. (cf. Lemma 1.3 in [30]) Let ∅ 6= K ⊂ X-a linear space over a field K ⊂ R, be
absolutely convex and suppose that J ⊂ I is finite. Further, let (α1, β1), . . . , (αn, βn) ∈ I0 for a
fixed n ∈ N. If

r ­ max
{
n+ 1,max

{
|α|+ |β|+

n∑
i=1

∣∣∣∣∣αβi − αiββi

∣∣∣∣∣ : (α, β) ∈ J
}}

, (2.2.1)

then for every x, y, u1, · · · , un ∈ 1rK, every (α, β) ∈ J, and S ⊂ {1, · · · , n} we have

(a) x+
∑
i∈S

ui ∈ K,

(b) αx+ βy +
∑
i∈S

αβi−αiβ
βi

ui ∈ K.

We quote here a convex version of Lemma 2.1 in [31], which is used in the proof of our main
result obtained in Chapter 6 (cf. [29]).

Lemma 2.2.2. (cf. Lemma 1.4 in [30]) Fix N ∈ N. Suppose that K is a non-empty convex set
of X-a linear space over a field K ⊂ R, such that 0 ∈ algintK, and G a group uniquely divisible
by N !. Let Bi : K → G, i ∈ {0, · · · , N} be functions homogeneous of the ith order with respect
to {2, · · · , N + 1}, i.e. satisfying for every i ∈ {0, · · · , N}, every k ∈ {2, · · · , N + 1} and every
z ∈ 1

N+1K
Bi(kz) = kiBi(z).

If BN(x) + · · ·+B0(x) = 0, for every x ∈ K, then BN = · · · = B0 = 0.
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Let us mention a very important result used in [25], [28], [26] and [27] due to L. Székelyhidi
who proved that every solution of a very general linear equation is a polynomial function (see
[35] Theorem 9.5, cf. also W. H. Wilson [39]).

Theorem 2.2.1. (Theorem 1.2 in [26]) Let G be an Abelian semigroup, S an Abelian group, n
a positive integer, ϕi, ψi additive functions from G to G and let ϕi(G) ⊂ ψi(G), i ∈ {1, . . . , n}.
If functions f, fi : G→ S satisfy equation

f(x) +
n∑
i=1

fi(ϕi(x) + ψi(y)) = 0, (2.2.2)

then f satisfies (2.1.1).

The Székelyhidi’s result makes it easier to solve linear equations because it is no longer neces-
sary to deal with each equation separately. Instead, we may formulate results which are valid
for large classes of equations.

In subsequent chapters we will present our results obtained in [25], [28], [26], [27] and [29].
Before we state the results, let us adopt the following notation. Let G and H be a commutative
groups. Then SAi(G;H) denotes the group of all i-additive, symmetric mappings from Gi

into H for i > 2, while SA0(G;H) denotes the family of constant functions from G to H
and SA1(G;H) = Hom(G;H). We also denote by I the subset of Hom(G;G) × Hom(G;G)
containing all pairs (α, β) for which Ran(α) ⊂ Ran(β). Furthermore, we adopt a convention
that a sum over an empty set of indices equals zero. We denote also for an Ai ∈ SAi(G;H) by
A∗i the diagonalization of Ai, i ∈ N ∪ {0}. We denote also for an Ai ∈ SAi(G;H) by A∗i the
diagonalization of Ai, i ∈ N∪{0}. Let us also introduce the operator Γ : G×G×HG×G → HG×G

defined as follows. For each φ : G×G→ H and each (u, v) ∈ G×G we set

Γ(u,v)φ(x, y) := φ(x+ u, y + v)− φ(x, y),

for each (x, y) ∈ G × G. In fact, Γ is nothing else but the operator ∆ defined above applied
to functions of two variables. However we wish to stress the difference between one and two
variables, this is why we denote the new operator with a different symbol.

7
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Chapter 3

On a new class of functional equations
satisfied by polynomial functions

Here we present the result obtained in [25] where we generalized the left-hand side of the
Fechner-Gselmann equation given by equation (1.0.2).

The fundamental tool in achieving the results in [25], [28], [26] and [27] is a very special
Lemma (cf. Lemma 2.1 in [25], Lemma 1.1 in [28], Lemma 2.1 in [26] and Lemma 1.1 in [27]).
Let us observe that this is the modified version of Lemma 1 in [22] and Lemma 2.3 in [31]. The
result is a generalization of theorems from L. Székelyhidi’s book [35] (Theorem 9.5), which in
turn is a generalization of a W. H. Wilson result from [39].

3.1 Sablik Lemma

Lemma 3.1.1. (cf. Lemma 2.1 in [26] ) Fix N ∈ N ∪ {0}, M ∈ N ∪ {−1, 0} and, if M ­ 0,
let Ip,n−p, 0 ¬ p ¬ n, n ∈ {0, . . . ,M} be finite subsets of I. Suppose further that H is an
Abelian group uniquely divisible by N ! and G is an Abelian group. Moreover, let functions
ϕi : G → SAi(G;H), i ∈ {0, . . . , N} and, if M ­ 0, ψp,n−p,(α,β) : G → SAi(G;H), (α, β) ∈
Ip,n−p, 0 ¬ p ¬ n, n ∈ {0, . . . ,M},satisfy

ϕN(x)(yN) +
N−1∑
i=0

ϕi(x)(yi) = RM(x, y), (3.1.1)

where RM(x, y) is defined in the following way

RM(x, y) =


0, M = −1,

M∑
n=0

n∑
p=0

∑
(α,β)∈Ip,n−p

ψp,n−p,(α,β) (α(x) + β(y)) (xp, yn−p), M ­ 0

for every x, y ∈ G. Then ϕN is a polynomial function of degree not greater than m, where

m =
M∑
n=0

card
(

M⋃
s=n

Ks

)
− 1, (3.1.2)

and Ks =
⋃s
p=0 Ip,s−p for each s ∈ {0, . . . ,M}, if M ­ 0. Moreover, if M = −1,

ϕN(x)(yN) +
N−1∑
i=0

ϕi(x)(yi) = 0

then m = −1 and ϕN is the zero function.

8
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Proof. Let us fix an N ∈ N ∪ {0}. We prove the Lemma using induction with respect to M.
Let us start with M = −1 ; we mean that the right-hand side of the equation (3.1.1) vanishes.
Thus (3.1.1) reduces to

ϕN(x)(yN) +
N−1∑
i=0

ϕi(x)(yi) = 0, (3.1.3)

for each x, y ∈ G. It turns out that the polynomial in y and coefficients ϕi(x), i ∈ {0, . . . , N}
vanishes identically. It is not difficult to see that it is equivalent to the system of identities
ϕi = 0, i ∈ {0, . . . , N}. In particular ϕN is a polynomial function, identically equal to 0, the
degree is hence estimated by 0.

Now suppose that our Lemma holds for some M > −1 and consider the equation

ϕN(x)(yN) +
N−1∑
i=0

ϕi(x)(yi) =
M+1∑
n=0

n∑
p=0

∑
(α,β)∈Ip,n−p

ψp,n−p,(α,β) (α(x) + β(y)) (xp, yn−p) (3.1.4)

for every x, y ∈ G. Assume that KM+1 6= ∅ - otherwise (3.1.4) reduces to (3.1.1) and we are
done. Further, assume that Ip,M+1−p 6= ∅ for some p ∈ {0, . . . ,M + 1}. Fix such a p and write
Ip,M+1−p = {(αj, βj) : j ∈ {1, . . . ,m}} for some m ∈ N. Choose a pair (α, β) ∈ Ip,M+1−p and fix
a u1 ∈ G arbitrarily. To the u1 take a v1 ∈ β−1({α(−u1)}) so that α(u1) + β(v1) = 0. Now let
us apply the operator Γ(u1,v1) to both sides of (3.1.4). On the left-hand side we obtain

ϕN(x+ u1)((y + v1)N)− ϕN(x)(yN) +
N−1∑
i=0

Γ(u1,v1)ϕi(x)(yi)

= ϕN(x+ u1)(yN)− ϕN(x)(yN) +
N∑
k=1

(
N
k

)
ϕN(x+ u1)(yN−k, vk1)

+
N−1∑
i=0

Γ(u1,v1)ϕi(x)(yi) = ∆u1ϕN(x)(yN) +
N∑
k=1

(
N
k

)
∆u1ϕN(x)(yN−k, vk1)

+
N∑
k=1

(
N
k

)
ϕN(x)(yN−k, vk1) +

N−1∑
i=0

Γ(u1,v1)ϕi(x)(yi). (3.1.5)

Denoting ϕ̂N := ∆u1ϕN we get again the right-hand side of equation (3.1.1) but with ϕ̂N in-
stead of ϕN (note that the remaining summands may be written as polynomial functions in y
but of degrees lower than N, and they can be rearranged in such a way that the left-hand side
is again a finite sum of polynomial functions in y with coefficients dependent on x).

Let us look now at the right-hand side. If we apply Γ(u1,v1) to the first summands it will
transform them into summands of similar character, with α(x)+β(y) replaced by α(x)+β(y)+
α(u1) + β(v1). But in the last summand, and more exactly in the summand determined by the
pair (α, β) to which u1 and v1 were selected, we have the following situation

ψp,M+1−p,(α,β) (α(x) + β(y) + α(u1) + β(v1)) ((x+ u1)p, (y + v1)M+1−p)
−ψp,M+1−p,(α,β) (α(x) + β(y)) (xp, yM+1−p)
= ψp,M+1−p,(α,β) (α(x) + β(y)) ((x+ u1)p, (y + v1)M+1−p)
−ψp,M+1−p,(α,β) (α(x) + β(y)) (xp, yM+1−p)
= ψp,M+1−p,(α,β) (α(x) + β(y)) (xp, yM+1−p)
−ψp,M+1−p,(α,β) (α(x)β(y)) (xp, yM+1−p)

+
∑

(s,t)∈{0,··· ,p}×{0,··· ,M+1−p}\{(0,0)}

(
p
s

)(
M+1−p

t

)
ψp,M+1−p,(α,β) (α(x) + β(y)) (xp−s, us1, y

M+1−p−t, vt1)

=
∑

(s,t)∈{0,··· ,p}×{0,··· ,M+1−p}\{(0,0)}

(
p
s

)(
M+1−p

t

)
ψp,M+1−p,(α,β) (α(x) + β(y)) (xp−s, us1, y

M+1−p−t, vt1), (3.1.6)

9
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for every x, y ∈ G. We see that the action of Γ(u1,v1) increases the number of summands but
decreases the degree of polynomial functions by 1. Applying the operator p− 1 more times we
will eventually annihilate the summand on the right-hand side. Repeating the above procedure
for arbitrary uj ∈ G, j ∈ {1, · · · , q} we obtain equation (cf. (3.1.5) and (3.1.6))

∆u1,...,uqϕN(x)(yN) +
N−1∑
i=0

ϕ̂i(x)(yi)

=
M∑
n=0

n∑
p=0

∑
(α,β)∈Ip,n−p

ψ̂p,n−p,(α,β) (α(x) + β(y)) (xp, yn−p)

+
m∑

j=0,j 6=p

∑
(α,β)∈Ij,M+1−j

ψ̂j,M+1−j,(α,β) (α(x) + β(y)) (xj, yM+1−j), (3.1.7)

for every x, y ∈ G. Here ψ̂p,n−p,(α,β) and ϕ̂i are new functions obtained after applying Γ operator
to the previous ones. Anyway, the method shows that repeating it we may arrive at complete
annihilation of the summand corresponding to M+1 and finally replace (3.1.7) by the following.

∆u1,...,uqϕN(x)(yN) +
N−1∑
i=0

ϕ̂i(x)(yi)

=
M∑
n=0

n∑
p=0

∑
(α,β)∈Ip,n−p

ψ̂p,n−p,(α,β) (α(x) + β(y)) (xp, yn−p), (3.1.8)

for all x, y ∈ G and u1, . . . , uq ∈ G. Now we may use the induction hypothesis and infer that

∆u1,...,uqϕN

is a polynomial function.

The estimation of the degree consists in realizing what is happening indeed. Applying the
operator Γ(u,v) (with properly selected u and v) to both sides we ”annihilate” one summand on
the right-hand side of (3.1.1) at the level 0. Thus, applying the operator Γ cardK0 times with
arbitrary u’s we get rid of the summands constituting the level 0. Then we apply again Γ to
annihilate the level 1 summands, but we have to do it in two steps. First we decrease the degree
of summand by 1 and only then, in step two, we can annihilate the summand. It takes thus
2cardK1 to annihilate the terms of the degree 1. Similarly, it takes 3cardK2 to annihilate terms
of the second degree, and, in general, (n+ 1)cardKn to annihilate terms of the n-th degree. On
the left-hand side appears the sign of ∆u1,...,uqϕN(x)(y) where

q =
M∑
n=0

card
(

M⋃
s=n

Ks

)
.

With this lemma, it can be proved(under some mild assumptions) that at least one of the
functions in equations (1.0.2), (1.0.3), and (1.0.4) is a polynomial function.

3.2 Results

3.2.1 Fechner-Gselmann equation

Let us solve equation (1.0.1) by applying our Lemma 3.1.1.

10
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Theorem 3.2.1. (cf. Theorem 3.1 in [25]) Let the pair (F, f) of functions mapping R to R
satisfy the equation

F (x+ y)− F (x)− F (y) = yf(x) + xf(y) (3.2.1)

for all x, y ∈ R. Then f is a polynomial function of degree not greater than 2 and F is a
polynomial function of degree not greater than 3.

Proof. Let us rewrite equation (3.2.1) in the form

f(x)y + F (x) = −f(y)x+ F (x+ y)− F (y) (3.2.2)

for all x, y ∈ R. If we take now G = H = R, N = 1, M = 1, I0,0 = {(0, id), (id, id)}, ψ0,0,(0,id) =
−F, ψ0,0,(id,id) = F, I0,1 = ∅, I1,0 = {(0, id)}, ψ1,0,(0,id) = −f, ϕ1 = f, ϕ0 = F then we see that
(3.2.2) is a particular case of (3.1.1). We also have K0 = I0,0 and K1 = I1,0 with card(K0∪K1) =
2 and cardK1 = 1. Therefore (cf. (3.1.2)) f is a polynomial function of degree at most 2. Hence
there exist A0 ∈ SA0(R,R), A1 ∈ SA1(R,R) and A2 ∈ SA2(R,R) such that f is given by

f(x) = A∗0 + A∗1(x) + A∗2(x) (3.2.3)

for every x ∈ R. On the other hand, taking (3.2.1) into consideration again and putting y = h
in (3.2.1) we obtain after rearranging the equation

F (x+ h)− F (x) = hf(x) + xf(h) + F (h),

or
∆hF (x) = hf(x) + xf(h) + F (h). (3.2.4)

Since f is a polynomial function, we see that the right-hand side of the above is a polynomial
function. Now, applying the Fréchet operator three times to both sides of (3.2.4) we see that
the right-hand side vanishes and so does the left-hand side. This means however that F is a
polynomial function of order greater by 1 than order of f.

Remark 3.2.1. (cf. Remark 3.1 in [25]) In fact we have shown above that the class of poly-
nomial functions has the so called double difference property, more exactly if DF defined by
DF (x, y) = F (x+ y)− F (x)− F (y) is a polynomial function of two variables then F = a+ p,
where a : R −→ R is an additive function and p : R −→ R is a polynomial function.

Let Bi ∈ SAi(R,R), i ∈ {0, . . . , 3} be such that

F (x) = B∗0 +B∗1(x) +B∗2(x) +B∗3(x) (3.2.5)

for every x ∈ R.

Remark 3.2.2. (cf. Remark 3.2 in [25]) In (3.2.1) taking qx; qy in places of x and y; respec-
tively, using the rational homogeneity of monomial summands of F and f and joining together
the terms with equal powers of q we can see that this equation is possible only if it occurs for
monomials of equal order.

Taking the above remark into account, we start with F = B∗0 = B0. Then from (3.2.1) we
infer that f = 0 and so

−B0 = 0,

In particular, F (0) = 0. Let us now assume that F (x) = B∗1(x) = B1(x). Then necessarily (cf.
(3.2.1))

0 = F (2x)− 2F (x) = 2xf(x)

11
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whence it follows that f = 0. Thus B1 is an arbitrary additive function, and in particular A0 = 0.

The next step is
F (x) = B∗2(x) = B2(x, x)

for every x ∈ R. From (3.2.1) we derive

2B2(x, y) = xA1(y) + yA1(x)

for every x, y ∈ R. Hence
B∗2(x) = xA1(x) (3.2.6)

for every x ∈ R. Now, let us pass to the case where F (x) = B∗3(x) for every x ∈ R. Then we
have f(x) = A∗2(x), x ∈ R and from (3.2.1) we get, taking x = y

6B∗3(x) = 2xA∗2(x)

whence
B∗3(x) =

1
3
xA∗2(x) (3.2.7)

for every x ∈ R. Inserting the above equality into (3.2.1) we obtain

(x+ y)A∗2(x+ y)− xA∗2(x)− yA∗2(y) = 3 (xA∗2(y) + yA∗2(x))

for every x, y ∈ R. After some elementary calculations we obtain hence

(x+ y)A2(x, y) = yA∗2(x) + xA∗2(y)

for every x, y ∈ R. Putting here y = 1 we obtain

xA2(x, 1) + A2(x, 1) = A2(x, x) + xA∗2(1) (3.2.8)

for every x ∈ R. We obtain from (3.2.8)

A2(x, 1) = xA∗2(1)

and
A∗2(x) = xA2(x, 1) = x2A∗2(1) (3.2.9)

for every x ∈ R. Taking into account (3.2.7) we have by (4.1.5)

B∗3(x) =
1
3
x3A∗2(1) (3.2.10)

for every x ∈ R. Thus we have proved the following.

Proposition 3.2.1. (cf. Proposition 3.2 in [25]) The pair (F, f) is a solution of (3.2.1) if, and
only if

� f(x) = A1(x) + a2x
2,

� F (x) = B1(x) + xA1(x) + 1
3a2x

3,

for all x ∈ R. Here A1 and B1 are arbitrary additive functions, and a2 ∈ R is an arbitrary
constant.
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3.2.2 Generalized left-hand side of the Fechner-Gselmann equation

Now we are going to investigate a slightly different equation. We are interested in solving the
equation

n∑
i=1

γiF (αix+ βiy) = xf(y) + yf(x) (3.2.11)

for every x, y ∈ R. First, we assume that both functions F and f are polynomial functions.
Then, similarly as in the case of Theorem 3.2.1, the monomial summands of F and f of orders
k + 1 and k, respectively satisfy (3.2.11). Later on we will discuss how Lemma 3.1.1 may be
used to show that (in some situations) F and f are indeed polynomial functions.

A characteristic feature of (3.2.11) is dependence of the existence of solutions on the be-
haviour of the sequence (Sk)k∈N given by

Sk =
n∑
i=1

γi(αi + βi)k+1, (3.2.12)

for all k ∈ N∪{0}. Let us observe that in the case of (3.2.1) we have n = 3 and γ1 = α1 = β1 =
α2 = β3 = 1, and β2 = α3 = 0 while γ2 = γ3 = −1. We have Sk = 2k+1 − 2 = 2(2k − 1), k ∈ N,
in particular S0 = 1 · 2− 1 · 1− 1 · 1 = 0.

Using our Lemma 3.1.1 we infer rather easily that f is a polynomial function. We assume
that also F is a polynomial function. The aim of the next theorem is to prove that, under
the assumptions made, solutions of (3.2.11) are continuous, except for an additive summand.
Similarly as in the case of Theorem 3.2.1, it is enough to assume that F and f are monomials.

Theorem 3.2.2. (cf. Theorem 3.3 in [25]) Let k ∈ N∪{0}. Let γi ∈ R, αi, βi ∈ Q be such that
(cf. (3.2.12)) Sk 6= 0, k ∈ N∪ {0}. Further, let f : R −→ R be either 0 or a monomial function
of order k, let F : R −→ R be a monomial function of order k + 1 and suppose that the pair
(F, f) satisfies equation (3.2.11).

(i) If k = 1 then either
n∑
i=1

γiα
2
i 6= 0 6=

n∑
i=1

γiβ
2
i and f = F = 0 is the only solution of

(3.2.11), or
n∑
i=1

γiα
2
i =

n∑
i=1

γiβ
2
i = 0 and f is an arbitrary additive function while F is

given by F (x) = 2
S1
xf(x).

(ii) If k = 0 or k ­ 2 then both f and F are continuous.

Moreover, for every k > 2 and for every j ∈ {2, . . . , k − 1}, if f 6= 0 then

n∑
i=1

γiα
j
iβ

k+1−j
i = 0, (3.2.13)

n∑
i=1

γiα
k+1
i βi =

n∑
i=1

γiαiβ
k+1
i = 0, (3.2.14)

which implies

Sk = 2(k + 1)
n∑
i=1

γiα
k
i βi = 2(k + 1)

n∑
i=1

γiαiβ
k
i , (3.2.15)

and obviously
n∑
i=1

γiα
k
i βi =

n∑
i=1

γiαiβ
k
i . (3.2.16)
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Proof. Let us start with the case k = 0. Then f = const = A0 and F is additive. Putting x = y
in (3.2.11) we obtain (taking into account rational homogeneity of F )

S0F (x) = 2xA0,

for each x ∈ R. Using the assumption that S0 6= 0 we get

F (x) =
2
S0
A0x,

for each x ∈ R, and hence F is a continuous function.

In the case k = 1 we obtain that f = A1 is additive and F is a quadratic function, i.e.

a diagonalization of a biadditive symmetric function, S1 =
n∑
i=1

γi(αi + βi)2. Putting x = y in

(3.2.11) we obtain
S1F (x) = 2xA1(x),

for every x ∈ R, whence (keeping in mind that S1 6= 0 ) we get (denoting 2
S1

by C1)

F (x) = C1xA1(x) (3.2.17)

for every x ∈ R. Substituting the above into (3.2.11), we obtain

C1
n∑
i=1

γi [(αix+ βiy) (αiA1(x) + βiA1(y))]

= C1

[(
n∑
i=1

γiα
2
i

)
xA1(x) +

(
n∑
i=1

γiβ
2
i

)
yA1(y)

]
+C1

n∑
i=1

γiαiβi (xA1(y) + yA1(x))

= xA1(y) + yA1(x), (3.2.18)

for all x, y ∈ R. Comparing terms of the same degree on both sides of the above equation, we
obtain

n∑
i=1

γiα
2
ixA1(x) = 0,

for all x ∈ R, and symmetrically,
n∑
i=1

γiβ
2
i yA1(y) = 0,

for all y ∈ R. Both of these equations hold if either A1 = 0 or

n∑
i=1

γiα
2
i = 0 =

n∑
i=1

γiβ
2
i = 0. (3.2.19)

Now if A1 = 0 then also F = 0, and we get the continuity of a solution (F, f) of (3.2.11) in
this case. Further let us look for non-zero solutions of (3.2.11). The existence of a nontrivial A1
implies that (3.2.19) holds. So, in this case we have

S1 = 2
n∑
i=1

γiαiβi. (3.2.20)

Taking (3.2.18) and (3.2.19) (hence (3.2.20)) into account we obtain (keeping in mind that
S1 6= 0)

2
S1

S1
2
xA1(y) = xA1(y)
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for all x, y ∈ R; which actually means that taking an arbitrary additive function A1 as f, we
get that the pair (F, f) is a solution of (3.2.11) for k = 1. Of course, the solutions are mostly
discontinuous.

Now, let us proceed to the case k = 2.Observe that f is now a diagonalization of a biadditive,
symmetric function A2. Similarly as in the previous cases, putting x = y we obtain from (3.2.11)

S2F (x) = 2xf(x),

for every x ∈ R, whence, in view of S2 6= 0,

F (x) =
2
S2
xf(x) (3.2.21)

for all x ∈ R. Denote 2
S2

by C2.

Let us substitute the formula (3.2.21) into (3.2.11). We obtain

C2

[
n∑
i=1

γi (αix+ βiy) f (αix+ βiy)
]

= xf(y) + yf(x),

for all x, y ∈ R. Using the biadditivity of f (and hence its rational homogeneity) we obtain
hence

C2
n∑
i=1

γi (αix+ βiy) (α2iA
∗
2(x) + 2αiβiA2(x, y) + β2iA

∗
2(y))

= C2
n∑
i=1

γi (α3ixA
∗
2(x) + 2α2iβixA2(x, y) + αiβ

2
i xA

∗
2(y)

+ α2iβiyA
∗
2(x) + 2αiβ2i yA2(x, y) + β3i yA

∗
2(y)

)
= C2

n∑
i=1

γi (α3ixA
∗
2(x) + β3i yA

∗
2(y))

+C2
n∑
i=1

γiα
2
iβi (2xA2(x, y) + yA∗2(x))

+C2
n∑
i=1

γiαiβ
2
i (xA∗2(y) + 2yA2(x, y))

= xA∗2(y) + yA∗2(x), (3.2.22)

for all x, y ∈ R. Now, comparing the terms of the same degree on both sides of (3.2.22) we get
first that either

n∑
i=1

γiα
3
i =

n∑
i=1

γiβ
3
i = 0 (3.2.23)

or A2 = 0. In the sequel we assume that A2 6= 0, hence (3.2.23) holds. In other words S2 =

3
n∑
i=1

γi (α2iβi + αiβ
2
i ) . Let us compare the remaining terms. We get

C2
n∑
i=1

γiα
2
iβi (2xA2(x, y) + yA∗2(x)) = yA∗2(x),

and
C2

n∑
i=1

γiαiβ
2
i (2yA2(x, y) + xA∗2(y)) = xA∗2(y),

for all x, y ∈ R. Putting x = y above; and taking into account that A2 6= 0 we infer that
n∑
i=1

γiα
2
iβi =

n∑
i=1

γiαiβ
2
i = 1

3C2
= S2
6 . Hence we may write

xA2(x, y) = yA∗2(x) (3.2.24)
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and
yA2(x, y) = xA∗2(y) (3.2.25)

for all x, y ∈ R. Putting y = 1 into (3.2.24) and (3.2.25) we obtain

A∗2(x) = x2A∗2(1) (3.2.26)

for every x ∈ R, hence f and F are continuous.

Now, let us pass to the situation where k ­ 3. In general, if k ­ 3 and f and F satisfy
(3.2.11) then

f(x) = A∗k(x),

for every x ∈ R and hence

F (x) =
2
Sk
xA∗k(x),

for every x ∈ R. Put Ck := 2
Sk
. We can write

Ck
n∑
i=1

γi

[
αix

(
k∑
j=0

(
k
j

)
αjiβ

k−j
i Ak(xj, yk−j)

)

+ βiy

(
k∑
j=0

(
k
j

)
αjiβ

k−j
i Ak(xj, yk−j)

)]

= Ck
n∑
i=1

γi

[(
k∑
j=0

(
k
j

)
αj+1i βk−ji xAk(xj, yk−j)

)

+
(

k∑
j=0

(
k
j

)
αjiβ

k+1−j
i yAk(xj, yk−j)

)]

= Ck

[(
n∑
i=1

γiα
k+1
i

)
xA∗k(x) +

(
n∑
i=1

γiβ
k+1
i

)
yA∗k(y)

]
+Ck

n∑
i=1

γi

[(
k−1∑
j=0

(
k
j

)
αj+1i βk−ji xAk(xj, yk−j)

)

+
(

k∑
j=1

(
k
j

)
αjiβ

k+1−j
i yAk(xj, yk−j)

)]

= Ck

[(
n∑
i=1

γiα
k+1
i

)
xA∗k(x) +

(
n∑
i=1

γiβ
k+1
i

)
yA∗k(y)

]
+Ck

n∑
i=1

γi
[
αiβ

k
i

(
xA∗k(y) + kyAk(x, yk−1)

)
+ αki βi

(
kxAk(xk−1, y) + yA∗k(x)

)]
+Ck

n∑
i=1

γi

[
k−1∑
j=2

αjiβ
k+1−j
i

((
k
j−1

)
xAk(xj−1, yk+1−j) +

(
k
j

)
yAk(xj, yk−j)

)]
= xA∗k(y) + yA∗k(x), (3.2.27)

for all x, y ∈ R. Comparing terms of equal degrees we infer that either Ak = 0 or
n∑
i=1

γiα
k+1
i =

n∑
i=1

γiβ
k+1
i = 0 (cf. (3.2.14)). Assume from now on that we are interested in nontrivial solutions

of (3.2.11). Continuing comparisons of the terms on both sides of (3.2.27), we get for every
j ∈ {2, . . . , k − 1}

Ck
n∑
i=1

γiα
j
iβ

k+1−j
i = 0,

(cf. (3.2.13)) for otherwise (putting x = y) we would get(
k+1
j

)
xA∗k(x) = 0,
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which is impossible. Note that from the above (3.2.15) and (3.2.16) follows. Taking this into
account, as well as the definition of Ck and comparing the remaining terms in (3.2.27), we get

Ck
n∑
i=1

γiαiβ
k
i

(
xA∗k(y) + kyAk(x, yk−1)

)
= xA∗k(y),

for all x, y ∈ R. Using (3.2.15), we get hence

yAk(x, yk−1) = xA∗k(y), (3.2.28)

and analogously we infer
xAk(xk−1, y) = yA∗k(x), (3.2.29)

for all x, y ∈ R. Let us put x + y instead of x in (3.2.29). We obtain, after some easy though
tedious calculations that the lefthand side is equal to

L := x

[
k−1∑
j=0

(
k−1
j

)
Ak(xk−1−j, yj+1)

]
+ y

[
k−1∑
j=0

(
k−1
j

)
Ak(xk−1−j, yj+1)

]
,

while the right-hand side is equal to

R := y
k∑
j=0

(
k
j

)
Ak(xk−j, yj).

Comparing on both sides the terms of equal degree we obtain in particular the following sequence
of equalities.

xAk(xk−j−1, yj+1) = yAk(xk−j, yj), (3.2.30)

for j ∈ {0, . . . , k − 1} and all x, y ∈ R. Now, using (3.2.30) for j ∈ {0, . . . , k − 1} we arrive at

ykA∗k(x) = yk−1 [yA∗k(x)] = yk−1
[
xAk(xk−1, y)

]
= · · · = xkA∗k(y)

for every x, y ∈ R, in other words, putting y = 1 we obtain

A∗k(x) = A∗k(1)xk, (3.2.31)

for every x ∈ R, which means that Ak is continuous for k ­ 3 and thus the proof is finished.

Remark 3.2.3. (cf. Remark 3.3 in [25]) Using Lemma 3.1.1 exactly in the same way as we
did in the proof of Theorem 3.2.1, we infer rather easily that if the functions F and f satisfy
(3.2.11) then f must be a polynomial function. In the following simple example we observe that
the function F is not necessarily polynomial.

Example 3.2.1. (cf. Example 1 in [25]) Observe that the equation

F (x)− F (−x) = xf(y) + yf(x) (3.2.32)

is satisfied by any even function F and f = 0.

The reason why the above example works is that the equation

F (x)− F (−x) = 0,

for all x ∈ R, has solutions which are not polynomial. If we consider a general linear equation
n∑
i=1

γiF (αix+ βiy) = 0, (3.2.33)

for all x, y ∈ R, and we assume that at least one of the pairs (αi, βi) is linearly independent
from all others then, using Theorem 2.2.1, it may be shown that every solution of (3.2.33) is a
polynomial function. Therefore it is natural to formulate the following problem.
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Problem 3.2.1. (cf. Problem 1 in [25]) Let αi, βi, γi ∈ R, γi 6= 0, i = 1, . . . , n be such that there
exists an i0 ∈ {1, . . . , n} satisfying ∣∣∣∣∣ αi0 βi0

αi βi

∣∣∣∣∣ 6= 0, i 6= i0.

Is it possible that the functional equation (3.2.11) is satisfied by some functions f, F where F
is not a polynomial function?

As we have seen (cf. Example 3.2.1) it is possible that equation (3.2.11) is satisfied by
a pair (F, f) where F is not a polynomial function. However we will give some examples of
particular forms of this equation which have only polynomial solutions and therefore we can
apply Theorem 3.2.2 to solve these equations.

Proposition 3.2.2. (cf. Proposition 3.4 in [25]) Let αi, βi, γi, i ∈ {1, . . . , n} be real numbers
such that

n∑
i=1

γi 6= 0 (3.2.34)

holds and αi + βi = 1, i ∈ {1, . . . , n}. If the pair (F, f) of functions mapping R to R satisfies
equation (3.2.11) then the functions F and f are polynomial.

Proof. Similarly as before, from Lemma 3.1.1 we know that f is a polynomial function. Now it
is enough to take x = y in (3.2.11) to show that also F must be polynomial.

3.2.3 Applications

Now we show some examples of equations (with nontrivial solutions) which may be solved with
the use of Proposition 3.2.2 and Theorem 3.2.2 .

Example 3.2.2. (cf. Example 2 in [25]) Assume that functions F, f : R → R satisfy the
functional equation

F (x)− 4F
(
x+y
2

)
+ F (y) = xf(y) + yf(x), (3.2.35)

for all x, y ∈ R. Rearranging (3.2.35) in the form

yf(x)− F (x) = −f(y)x− 4F
(
x+y
2

)
+ F (y),

for all x, y ∈ R, we can see that f is a polynomial function of order at most 2. From Proposition
3.2.2 we know that also F is a polynomial function. Now we check the conditions of Theorem
3.2.2. If k = 0 then f(x) = b for some constant b ∈ R and all x ∈ R, further S0 = −2 6= 0 and,
consequently, F (x) = −bx, for all x ∈ R. Now let k = 1, then S1 = −2,

3∑
i=1

γiα
2
i =

3∑
i=1

γiβ
2
i = 0,

and again from Theorem 3.2.2 we infer that f is any additive function and F (x) = −xf(x) for
all x ∈ R. If k = 2 then it is easy to see that the solutions of (3.2.35) must vanish. Thus the
general solution of this equation is given by f(x) = a(x) + b and F (x) = −xa(x)− bx, x ∈ R,
where a : R→ R is additive and b is a constant.

Example 3.2.3. (cf. Example 3 in [25]) Assume that functions F, f : R → R satisfy the
functional equation

F (x)− 8F
(
x+y
2

)
+ F (y) = xf(y) + yf(x), (3.2.36)
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for all x, y ∈ R. Rearranging (3.2.36) in the form

yf(x)− F (x) = −f(y)x− 8F
(
x+y
2

)
+ F (y),

for all x, y ∈ R, we can see that f is a polynomial function of order at most 2. From Proposition
3.2.2 we know that also F is a polynomial function. Now we check the conditions of Theorem
3.2.2. If k = 0 then f(x) = b for some constant b ∈ R, and all x ∈ R, further S0 = −6 6= 0 and,
consequently, F (x) = − b

3x for all x ∈ R. Now let k = 1, then S1 = −6 but this time

3∑
i=1

γiα
2
i =

3∑
i=1

γiβ
2
i = −1 6= 0

and again from Theorem 3.2.2 we infer that f = F = 0. If k = 2 then the solutions must be
continuous since S2 = −6 6= 0, moreover

3∑
i=1

γiα
3
i =

3∑
i=1

γiβ
3
i = 0

which means that f(x) = cx2 and F (x) = − c
3x
3, x ∈ R satisfy (3.2.36). Thus the general

solution of this equation is given by f(x) = cx2 + b and F (x) = − c
3x
3 − b

3x, x ∈ R where b, c
are real constants.

3.2.4 A generalization of the Fechner-Gselmann equation

Observe that in equation (1.0.1) the left-hand side is the difference connected with the Cauchy
equation. Since additive functions are monomial functions of order one, it is natural to ask
whether this difference may be replaced by the difference connected with monomial function
of higher orders or with the polynomial functions. In the next part of this chapter we consider
functional equation constructed in such way.

Lemma 3.2.1. (cf. Lemma 3.1 in [25]) Let n be a given positive integer, if the pair (F, f) of
functions mapping R to R satisfies the equation

∆n
yF (x) = xf(y) + yf(x), (3.2.37)

for all x, y ∈ R, then f is a polynomial function of order at most n+ 1 and F is a polynomial
function of order not greater than n+ 2.

Proof. We write (3.2.37) in the form

f(x)y − (−1)nF (x) = −f(y)x−
n∑
i=1

(−1)i
(
n
i

)
F (x+ iy),

for all x, y ∈ R. Similarly as before, using Lemma 3.1.1, we can see that f is a polynomial
function of order at most (n+ 1) + 1− 1 = n+ 1. Indeed, observe that in the present situation
we have K0 = {(id, iid) : i ∈ {1, . . . , n}} and K1 = {(0, id)}. Hence card(K0 ∪K1) = n+ 1 and
cardK1 = 1, whence the estimation follows (cf. (3.1.2)).

Further, applying the difference operator with the span y (n + 2)−times to the both sides
of (3.2.37) we get

∆2n+2y F (x) = 0,

for all x ∈ R i.e. F is a polynomial function of order 2n+ 1.
Now consider any k > n+ 1, the function f is a polynomial function of order smaller than

k thus the monomial summand of F of order k + 1 satisfies (3.2.37) with f = 0. However the
n−th difference does not vanish for monomial functions of order k. This means that summands
of F of orders greater than n+ 2 must be zero, i.e. F is a polynomial function of order at most
n+ 2.
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Now we turn our attention to the equation where the left-hand side is the difference con-
nected with the equation of monomial functions.

Lemma 3.2.2. (cf. Lemma 3.2 in [25]) Let n be a given positive integer, if the pair (F, f) of
functions mapping R to R satisfies the equation

∆n
yF (x)− n!F (y) = xf(y) + yf(x), (3.2.38)

for all x, y ∈ R, then f is a polynomial function of order at most n+ 1 and F is a polynomial
function of order not greater than n+ 2.

Proof. We write (3.2.38) in the form

f(x)y − (−1)nF (x) = −f(y)x−
n∑
i=1

(−1)i
(
n
i

)
F (x+ iy)− n!F (y),

for all x, y ∈ R. We see that K0 = {(id, iid) : i ∈ {1, . . . , n}} ∪ {(0, id)} and K1 = {(0, id)}.
Hence card(K0 ∪K1) = n + 1 and cardK1 = 1. Now applying again Lemma 3.1.1, we can see
(cf. (3.1.2)) that f is a polynomial function of order at most (n+ 1) + 1− 1 = n+ 1. Further,
applying the difference operator with the span y (n+ 2)−times to the both sides of (3.2.38) we
get

∆2n+2y F (x) = 0,

for all x ∈ R, i.e. F is a polynomial function of order 2n+ 1.
Now, similarly as in the respective part of the proof of Lemma 3.2.1, we can see that the

order of F cannot be greater than n + 2. Indeed, summands of F of orders k > n + 2 must
satisfy (3.2.38) with the right-hand side equal to zero (since f has no terms of order k − 1)
which is impossible since the equation

∆n
yF (x)− n!F (y) = 0,

for all x, y ∈ R, characterizes monomial functions of order n < k.

Now we can present the general solutions of equations (3.2.37) and (3.2.38).

Theorem 3.2.3. (cf. Theorem 3.5 in [25]) A pair (F, f) of functions mapping R to R satisfies
equation (3.2.37) if and only if F is a polynomial function of order at most n− 1 and f = 0.

Proof. From Lemma 3.2.1 we know that both f and F are polynomial functions. Take first
k ∈ {0, 1, . . . , n − 2}, and assume that f is a monomial function of order k and that F is a
monomial function of order k + 1. We can see that Sk = 0 i.e. from Theorem 3.2.2 we obtain
f = 0.

Now, take k ∈ {n−1, n, n+1}, then Sk 6= 0 and, as previously, assume that f is a monomial
function of order k and that F is a monomial function of order k + 1. We want to show that
f = 0. Thus for the indirect proof assume that f 6= 0, then F is also nonzero. Observe that it
leads to a contradiction. Indeed, equation (3.2.37) cannot be satisfied, since in the expression
∆n
yF (x) we have the term of order k + 1 with respect to y which is missing at the right-hand

side.
We proved that f = 0, thus F obviously satisfies

∆n
yF (x) = 0

for all x, y ∈ R, i.e. F is a polynomial function of order at most n− 1.

In the next theorem we obtain the solution of equation (3.2.38).
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Theorem 3.2.4. (cf. Theorem 3.6 in [25]) Let (F, f) be a pair of functions mapping R to R.
If n = 1 then the solutions of (3.2.38) are of the form obtained in Proposition 3.2.1. If n > 2
then F is a monomial function of order n and f = 0.

Proof. If n = 1 then (3.2.38) reduces to (1.0.1) which is already solved. Thus we may assume
that n ­ 2. Using Lemma 3.2.2, we can see that function F and f are polynomial and as
usually we will work with monomial functions. Thus let f and F be monomial functions of
orders k, k + 1; respectively. We want to show that f = 0. However, if f 6= 0 then the right-
hand side which is of the form xf(y)+yf(x), contains the term yf(x) of order k with respect to
the variable x. Such term is missing in the expression ∆n

yF (x)−n!F (y), since n ­ 2. Therefore
also in this case we have f = 0.

Using the equality f = 0 in (3.2.38), we get

∆n
yF (x)− n!F (y) = 0,

for all x, y ∈ R, for each monomial summand of F. This means that F is a monomial function
of order n.

Remark 3.2.4. (cf. Remark 3.4 in [25]) It is interesting that we have a nice set of solutions
only for the difference stemming from Cauchy’s equation. Thus the case n = 1 in (3.2.38)
is exceptional. It seems that the right-hand side of (1.0.1) must be suitably modified to get a
similar effect for n > 1.

We can add one more class of functional equations which may be solved with use of Theorem
3.2.2.

Proposition 3.2.3. (cf. Proposition 3.7 in [25]) Let βi, i ∈ {1, . . . , n}, γi, i ∈ {1, . . . , n + 1}
be real numbers such that (3.2.34) holds. If the pair (F, f) of functions mapping R to R satisfies
the equation

n∑
i=1

γiF (x+ βiy) + γn+1F (y) = xf(y) + yf(x), (3.2.39)

for all x, y ∈ R, then functions f and F are polynomial.

Proof. Similarly as before, from Lemma 3.1.1 we know that f is a polynomial function. Now it
is enough to take y = 0 in (3.2.39) to show that also F must be polynomial.

Remark 3.2.5. (cf. Remark 3.5 in [25]) Note that equation (3.2.39) is a generalization of
equations (3.2.38) and (3.2.37). However the methods used in Lemmas 3.2.1 and 3.2.2 were
needed to show that F is polynomial because, in case of these equation, the condition (3.2.34)
is not satisfied.

We end the chapter with a remark connecting the results obtained here with the topic
called alienation of functional equations (for some details concerning the problem of alienation
of functional equations see the survey paper of R. Ger and M. Sablik[15]).

Remark 3.2.6. (cf. Remark 3.6 in [25]) Consider two equations:

xf(y) + yf(x) = 0 (3.2.40)

which is satisfied only by f = 0 and

n∑
i=1

γiF (αix+ βiy) = 0 (3.2.41)

which usually has some solutions (depending on n and constants involved). Results concerning
equation (3.2.11) may be viewed from the perspective of the so called alienation of functional
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equations. Any pair of the form (F, 0) where F satisfies (3.2.41) is clearly a solution of (3.2.11).
Interesting is the question if (3.2.11) may have solutions of a different nature. As we proved in
case of some equations there are only solutions of this kind whereas in some other cases new
solutions appear. Thus, in fact, we have examples of alienation and nonalienation of equations
of this kind. It may even happen that for monomial functions of some order, some equations
are alien and for other orders the same equations are not alien. This effect is similar to the
approach presented in [36] by T. Szostok.
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Chapter 4

Functional Equation Characterizing
Polynomial Functions and an
Algorithm

4.1 Generalized right-hand side of the Fechner-Gselmann
equation

We continue the investigation presented in Chapter 3 (see [25]), where we generalized the left-
hand side of the Fechner-Gselmann equation, namely (1.0.2). This chapter presents our results
in [28], where we solve the generalized right-hand side of the Fechner and Gselmann equation,
that is we find general solutions of the following functional equation.

F (x+ y)− F (x)− F (y) =
m∑
i=1

(aix+ biy)f(αix+ βiy) (4.1.1)

for all x, y, ai, bi ∈ R and αi, βi ∈ Q. It turns out that under some mild assumption, the pair
(F, f) solving (4.1.1) happens to be a pair of polynomial functions and, in some important
cases, just the usual polynomials (even though we assume no regularity of solutions a priori).
In the second part of this chapter, we formulate an algorithm written in the computer algebra
system Maple which determines the polynomial solutions of the functional equations belonging
to the class (4.1.1).

While proving the main result in Chapter 3 (cf. Theorem 3.2.2 in Chapter 3 and Theorem
3.3 in [25]), we observed that the behaviour of solutions depends on the sequence (Sk)k∈N∪{0}
given by

Sk =
n∑
i=1

γi(αi + βi)k+1,

for all k ∈ N∪{0}. A characteristic feature of equation (4.1.1) is the dependence of the existence
of solutions on the sequences (Rk)k∈N∪{0} given by

Rk =
m∑
i=1

(ai + bi)(αi + βi)k (4.1.2)

for all k ∈ N ∪ {0}.

4.1.1 Theoretical Results

Let us start with the result showing that in some cases any solution (F, f) of (4.1.1) consists
of polynomial functions.
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Theorem 4.1.1. (cf. Theorem 2.1 in [28]) Let ai, bi, αi, βi ∈ R, i ∈ {1, · · · ,m}. Suppose further
that the pair of functions (F, f) mapping from R to R satisfies equation (4.1.1). If there exists
an i ∈ {1, · · · ,m} such that ∣∣∣∣∣αi βi

ai bi

∣∣∣∣∣ 6= 0, (4.1.3)

then f is a polynomial function of degree not greater than 2m and F is a polynomial function
of degree not greater than 2m+ 1.

Proof. By change of variable and applying Lemma 3.1.1, we obtain that f is a polynomial
function of degree not greater than 2m. Now, it is enough to take y = h in (4.1.1) and applying
2m + 2 times the Fréchet operator to both sides of (4.1.1) we see that the right-hand side
vanishes and so does the left-hand side. This means that F is a polynomial function of order
not greater than 2m+ 1.

Now, we proceed to the next theorem. However, it is now enough to assume that the pair
of functions (F, f) satisfying equation (4.1.1) are monomials (see [25], Remark 3.2).

Theorem 4.1.2. (cf. Theorem 2.2 in [28]) Let ai, bi ∈ R, αi, βi ∈ Q, i ∈ {1, . . . ,m}. Further,
let (Rk)k∈N∪{0} be defined by (4.1.2). Assume that Rk 6= 0 for some k ∈ N ∪ {0}, and that
equation (4.1.1) is satisfied by the pair (F, f) : R −→ R, of monomial functions of order k + 1
and k, respectively. The following assertions hold

(i) if k = 0 then f = 0 and F is arbitrary additive function.

(ii) if k 6= 0 then either f = F = 0 is the only solution of (4.1.1), or
m∑
i=1

aiα
k
i =

m∑
i=1

biβ
k
i = 0

while F is given by F (x) =
Rk

2k+1 − 2
xf(x). Moreover, for non-trivial f we see that either

(a)
m∑
i=1

biα
j+1
i βk−j−1i =

m∑
i=1

aiα
j
iβ

k−j
i for each j ∈ {0, · · · , k − 1} and f is an arbitrary

k-monomial function, or

(b)
m∑
i=1

biα
j+1
i βk−j−1i 6=

m∑
i=1

aiα
j
iβ

k−j
i for each j ∈ {0, · · · , k − 1} and f is necessarily a

continuous monomial function of order k and so is F of order k + 1.

Proof. Suppose that k = 0. Then f = const = A0 and F is additive. Putting x = y in (4.1.1)
we obtain

0 =
m∑
i=1

(ai + bi)xA0

i.e.
0 = R0xA0

for every x ∈ R. Since R0 6= 0, it follows that A0 = 0 = f.

Suppose that k = 1, we obtain that f = A1 is additive and F = B∗2 is a quadratic function,
or, in other words, diagonalization of a biadditive function. Putting x = y in (4.1.1) we obtain
(taking into account the rational homogeneity of f)

2B∗2(x) =
(
m∑
i=1

(ai + bi)(αi + βi)
)
xA1(x),

whence
2F (x) = R1xA1(x)
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for every x ∈ R, denoting D1 := R1
2 we get

F (x) = D1xA1(x)

for every x ∈ R. Substituting the above into (4.1.1) we obtain (taking into account the rational
homogeneity of A1)

D1 [(x+ y)A1(x+ y)− xA1(x)− yA1(y)] =
m∑
i=1

(aix+ biy)(αiA1(x) + βiA1(y))

and further

D1 [xA1(y) + yA1(x)] =
(
m∑
i=1

aiαi

)
xA1(x) +

(
m∑
i=1

biαi

)
yA1(x)

+
(
m∑
i=1

aiβi

)
xA1(y) +

(
m∑
i=1

biβi

)
yA1(y) (4.1.4)

for all x, y ∈ R. Comparing terms of the same degree on both sides of the above equation, we
obtain (

m∑
i=1

aiαi

)
xA1(x) = 0

for all x ∈ R, and symmetrically (
m∑
i=1

biβi

)
yA1(y) = 0

for all y ∈ R. Both of these equations hold if either A1 = 0 or

m∑
i=1

aiαi =
m∑
i=1

biβi = 0. (4.1.5)

Now if A1 = 0 then also F = 0. Let us look for non-zero solutions of (4.1.1). The existence of
a nontrivial A1 implies that (4.1.5) holds. So, in this case we have

D1 = R1
2 = 1

2

m∑
i=1

aiβi + 1
2

m∑
i=1

biαi. (4.1.6)

Taking into account (4.1.4), (4.1.5) and (4.1.6) we obtain(
m∑
i=1

biαi −
m∑
i=1

aiβi

)
(xA1(y)− yA1(x)) = 0 (4.1.7)

for all x, y ∈ R. From (4.1.7) we see that either

m∑
i=1

biαi =
m∑
i=1

aiβi

which leads to a situation where A1 can be an arbitrary (in particular discontinuous) additive
function and we get that the pair (F, f) is a solution of (4.1.1), or

yA1(x) = xA1(y),

for all x, y ∈ R. Putting y = 1 in the above equation we have

A1(x) = xA1(1),

for every x ∈ R, hence f and F are continuous.
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Now, let us proceed to the case k = 2. Assume that f = A∗2 is a diagonalization of a
biadditive symmetric function and F = B∗3 is a diagonalization of a triadditive symmetric
function. Putting x = y in (4.1.1) we obtain (taking into account the rational homogeneity of
f)

6B∗3(x) =
(
m∑
i=1

(ai + bi)(αi + βi)2
)
xA∗2(x)

or
6F (x) = R2xA

∗
2(x)

for every x ∈ R. Denoting D2 := R2
6 we get

F (x) = D2xA
∗
2(x)

for every x ∈ R. Substituting the above into (4.1.1) we obtain (taking into account the rational
homogeneity of A∗2)

D2 [(x+ y)A∗2(x+ y)− xA∗2(x)− yA∗2(y)]

=
m∑
i=1

(aix+ biy)(α2iA
∗
2(x) + 2αiβiA2(x, y) + β2iA

∗
2(y))

whence

D2 [2xA(x, y) + xA∗2(y) + 2yA2(x, y) + yA∗2(x)]

=
(
m∑
i=1

aiα
2
ix+ biα

2
i y
)
A∗2(x) + 2

(
m∑
i=1

aiαiβix+ biαiβiy
)
A2(x, y)

+
(
m∑
i=1

aiβ
2
i x+ biβ

2
i y
)
A∗2(y) (4.1.8)

for all x, y ∈ R. Comparing terms of the same degree on both sides of the above equation, we
obtain (

m∑
i=1

aiα
2
i

)
xA∗2(x) = 0,

for all x ∈ R, and symmetrically (
m∑
i=1

biβ
2
i

)
yA∗2(y) = 0,

for all y ∈ R. Both of these equations hold if either A2 = 0 or

m∑
i=1

aiα
2
i =

m∑
i=1

biβ
2
i = 0. (4.1.9)

In the sequel we assume A2 6= 0, hence (4.1.9) holds. So, in this case we have

D2 = R2
6 = 1

6

m∑
i=1

aiβ
2
i + 1

6

m∑
i=1

biα
2
i + 1

3

m∑
i=1

aiβi + 1
3

m∑
i=1

biαiβi. (4.1.10)

Comparing the remaining terms of (4.1.8), we get(
2D2 − 2

m∑
i=1

aiαiβi

)
xA2(x, y) =

(
m∑
i=1

biα
2
i −D2

)
yA∗2(x) (4.1.11)

and (
2D2 − 2

m∑
i=1

biαiβi

)
yA2(x, y) =

(
m∑
i=1

aiβ
2
i −D2

)
xA∗2(y) (4.1.12)

26
32:3544211610



for all x, y ∈ R. Putting x = y in (4.1.11) and (4.1.12) and taking into account that A2 6= 0 we
infer that

D2 = 2
3

m∑
i=1

biαiβi + 1
3

m∑
i=1

aiβ
2
i = 2

3

m∑
i=1

aiαiβi + 1
3

m∑
i=1

biα
2
i .

Now substituting D2 in (4.1.11) and (4.1.12) we obtain(
m∑
i=1

biα
2
i −

m∑
i=1

aiαiβi

)
xA2(x, y) =

(
m∑
i=1

biα
2
i −

m∑
i=1

aiαiβi

)
yA∗2(x) (4.1.13)

and (
m∑
i=1

aiβ
2
i −

m∑
i=1

biαiβi

)
yA2(x, y) =

(
m∑
i=1

aiβ
2
i −

m∑
i=1

biαiβi

)
xA∗2(y) (4.1.14)

for all x, y ∈ R. Let us take into account (4.1.13). We see that either

a)
m∑
i=1

biα
2
i =

m∑
i=1

aiαiβi, or

b) A2 = 0.

Suppose that case a) holds. Then A2 is arbitrary. In particular, choosing x and y properly, we
can assure that xA2(x, y) 6= yA∗2(x) (of course A2 has to be discontinuous then, because for a
continuous A2 we get A2(x, y) = cxy for some constant c ∈ R and all x, y ∈ R). Fix the chosen
x and y and let us pass to (4.1.14). If we interchange x and y, we easily see that (4.1.14) holds

only if
m∑
i=1

aiβ
2
i =

m∑
i=1

biαiβi. Thus we see that either

m∑
i=1

biα
2
i =

m∑
i=1

aiαiβi and
m∑
i=1

aiβ
2
i =

m∑
i=1

biαiβi

(and A2 is any biadditive function) or

xA2(x, y) = yA∗2(x) (4.1.15)

and

yA2(x, y) = xA∗2(y) (4.1.16)

for all x, y ∈ R. Putting y = 1 into (4.1.15) and (4.1.16) we obtain

A∗2(x) = x2A∗2(1) (4.1.17)

for every x ∈ R, hence f and F are continuous. Let us observe that if case a) holds, and
consequently, we also have

m∑
i=1

aiβ
2
i =

m∑
i=1

biαiβi,

then any discontinuous A2 (together with B3 generated by xA∗2(x)) satisfies (4.1.1).

Now, consider the general case k > 3 and f = A∗k. Similarly as in the previous cases, putting
x = y we obtain from (4.1.1)

(2k+1 − 2)F (x) = RkxA
∗
k(x)

for all x ∈ R. Denote Rk
2k+1−2 by Dk we have F (x) = DkxA

∗
k(x) for all x ∈ R. Substituting into

(4.1.1) we obtain

Dk [(x+ y)A∗k(x+ y)− xA∗k(x)− yA∗k(y)] =
m∑
i=1

(aix+ biy)A∗k(αix+ βiy)
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or

Dk

[
(x+ y)

(
k∑
j=0

(
k
j

)
Ak(xj, yk−j)

)
− xA∗k(x)− yA∗k(y)

]

=
m∑
i=1

(aix+ biy)
(

k∑
j=0

(
k
j

)
αjiβ

k−j
i Ak(xj, yk−j)

)

whence

Dk

[(
k∑
j=0

(
k
j

)
xAk(xj, yk−j)

)
+
(

k∑
j=0

(
k
j

)
yAk(xj, yk−j)

)]

−Dk [xA∗k(x)− yA∗k(y)] =
m∑
i=1

ai

(
k∑
j=0

(
k
j

)
αjiβ

k−j
i xAk(xj, yk−j)

)

+
m∑
i=1

bi

(
k∑
j=0

(
k
j

)
αjiβ

k−j
i yAk(xj, yk−j)

)
or

Dk

[(
k−1∑
j=0

(
k
j

)
xAk(xj, yk−j)

)
+
(

k∑
j=1

(
k
j

)
yAk(xj, yk−j)

)]

=
(
m∑
i=1

aiα
k
i

)
xA∗k(x) +

m∑
i=1

ai

(
k−1∑
j=0

(
k
j

)
αjiβ

k−j
i xAk(xj, yk−j)

)

+
(
m∑
i=1

biβ
k
i

)
yA∗k(y) +

m∑
i=1

bi

(
k∑
j=1

(
k
j

)
αjiβ

k−j
i yAk(xj, yk−j)

)
(4.1.18)

for all x, y ∈ R. Comparing terms of equal degrees we observe that either Ak = 0 or
m∑
i=1

aiα
k
i =

m∑
i=1

biβ
k
i = 0. For the nontrivial solutions of (4.1.1) let Ak 6= 0 and rewriting (4.1.18) we get

Dk

[(
k−1∑
j=0

(
k
j

)
xAk(xj, yk−j)

)
+
(
k−1∑
j=0

(
k
j+1

)
yAk(xj+1, yk−j−1)

)]

=
m∑
i=1

ai

(
k−1∑
j=0

(
k
j

)
αjiβ

k−j
i xAk(xj, yk−j)

)

+
m∑
i=1

bi

(
k−1∑
j=0

(
k
j+1

)
αj+1i βk−j−1i yAk(xj+1, yk−j−1)

)
. (4.1.19)

Comparing on both sides of (4.1.19) the terms of equal degree we obtain the following sequence
of equalities ((

k
j+1

)
Dk −

(
k
j+1

) m∑
i=1

biα
j+1
i βk−j−1i

)
yAk(xj+1, yk−j−1)

=
((

k
j

) m∑
i=1

aiα
j
iβ

k−j
i −

(
k
j

)
Dk

)
xAk(xj, yk−j) (4.1.20)

for j ∈ {0, . . . , k − 1} and for all x, y ∈ R. Now, using (4.1.20) we arrive at

k−1∏
j=0

(
Dk −

m∑
i=1

biα
j+1
i βk−j−1i

)
ykA∗k(x) =

k−1∏
j=0

(
m∑
i=1

aiα
j
iβ

k−j
i −Dk

)
xkA∗k(y) (4.1.21)

for all x, y ∈ R. From (4.1.21) we observe that either

Dk = Rk
2k+1−2 =

m∑
i=1

biα
j+1
i βk−j−1i =

m∑
i=1

aiα
j
iβ

k−j
i
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for each j ∈ {0, . . . , k − 1} which leads to a situation where Ak may be an arbitrary (in
particular, discontinuous) k-additive function and we get that the pair (F, f) is a solution of
(4.1.1), or

ykA∗k(x) = xkA∗k(y)

for all x, y ∈ R, putting y = 1 we obtain

A∗k(x) = xkA∗k(1)

for every x ∈ R, which leads to the continuous solutions of (4.1.1) for k > 3.

Remark 4.1.1. (cf. Remark 2.1 in [28]) Let us observe that the assumption (4.1.3) is essential.
Indeed, let us restrict to the case m = 1, and suppose that ai, bi, αi, βi, i ∈ {1, . . . ,m} be real
numbers such that ∣∣∣∣∣α1 β1

a1 b1

∣∣∣∣∣ = 0.

Then vectors (α1, β1) and (a1, b1) are linearly dependent, i.e. either α1 = β1 = 0 or there exists
a λ ∈ R such that

(a1, b1) = λ(α1, β1). (4.1.22)

In the first case we can reformulate (4.1.1) as

F (x+ y)− F (x)− F (y) = (a1x+ b1y)f(0),

and thus if f is an arbitrary function satisfying f(0) = 0, we get additivity of F, while f needs
not to be a polynomial function.

On the other hand, if λ = 0 then (4.1.1) takes the form

F (x+ y)− F (x)− F (y) = (0x+ 0y)f(α1x+ β1y) = 0,

and thus F is additive, and f may be arbitrary.

Finally, if λ 6= 0 then putting z := α1x+ β1y, we get

F (x+ y)− F (x)− F (y) = λzf(z),

whence (assuming that α1 6= 0) we get

F
(
z
α1

+ (α1−β1)y
α1

)
− F

(
z
α1
− β1y

α1

)
− F (y) = λzf(z). (4.1.23)

Putting in the above equation y = 0 we get

−F (0) = λzf(z),

for every z ∈ R. Moreover, putting y = z = 0 in (4.1.23) we get F (0) = 0, and hence

0 = λzf(z)

for every z ∈ R. It follows that

f(z) =
{

0, z 6= 0,
arbitrary, z = 0.

It is clear that at any case, f needs not to be polynomial.
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Now, observe that it is possible that (4.1.3) holds and (4.1.1) is satisfied by a pair (F, f) of
functions where f is not a polynomial function.

Example 4.1.1. (cf. Example 1 in [28]) Observe that the equation

F (x+ y)− F (x)− F (y) = xf(x+ y) + xf(−x− y) (4.1.24)

for all x, y ∈ R, is satisfied by an arbitrary additive function F and any odd function f.

Therefore, we will give particular forms of (4.1.1) which have only polynomial solutions.

Corollary 4.1.1. (cf. Corollary 2.1 in [28]) Let ai, bi, αi, βi, i ∈ {1, . . . ,m} be real numbers
such that (4.1.3) holds and

aiαi = 0 = biβi (4.1.25)

for each i ∈ {1, · · · ,m}. If the pair (F, f) of functions mapping R to R satisfies equation (4.1.1)
then F and f are polynomials.

Proof. The proof is a direct application of Lemma 3.1.1 and Fréchet operator.

Remark 4.1.2. (cf. Remark 2.2 in [28]) If (4.1.25) holds then checking conditions of Theorem
4.1.2 for k > 3 is irrelevant because it leads to only trivial solutions (Ak = f = 0, and F = 0).
Therefore, suppose if a pair of functions (F, f) satisfies (4.1.1), and (4.1.25) holds then f is a
polynomial function of degree not greater than 2 and F is a polynomial function of degree not
greater than 3. Note that in the case m = 2, α2 = β1 = a1 = b2 = 1, α1 = β2 = a2 = b1 = 0 we
get the equation (1.0.1).

Now, we develop an algorithm written in the computer algebra system Maple which takes
into account the above results to determine the polynomial solutions of the functional equations
belonging to the class (4.1.1). The main motivation for writing such an algorithm is that, solving
even simple equations belonging to class (4.1.1) needs a long and tiresome calculation.

4.2 Description of the Algorithm

Taking into account Corollary 4.1.1, Lemma 3.1.1, Theorem 4.1.1, Remark 4.1.2, and Theo-
rem 4.1.2 we formulate a procedure psfe(polynomial solution of functional equation) written in
Maple program which can be used to obtain the polynomial solutions of functional equations
of type (4.1.1).

The procedure is executed with the command

psfe(F (x+ y)− F (x)− F (y)−
m∑
i=1

(aix+ biy)f(αix+ βiy),

[(a1x+ b1y)f(α1x+ β1y), · · · , (amx+ bmy)f(αmx+ βmy)])

where the first parameter of psfe is the functional equation to be solved of the form (4.1.1) and
the second parameter is the list of the terms on the right-hand-side of the functional equation.
If the parameters are not of this form then we get an error message.

In order for the algorithm to work properly, the unknown functions must be a function of
F on the left-hand side and a function of f multiplied by a variable of x or y on the right-hand
side otherwise we get an error message. If the difference between the number of terms in the
first parameter(after conversion to a list by the algorithm) of psfe and the number of terms in
the second parameter of psfe is not equal to 3 then we get an error message. If some terms
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appear in the second parameter of psfe and don’t appear in the first parameter(after conversion
to a list by the algorithm) of psfe then we get an error message. If the 3 terms on the left-
hand side of (4.1.1) are not contained in the first parameter of psfe then we get an error message.

If Corollary 4.1.1 is not satisfied that is (4.1.3) and (4.1.25) is not valid for all terms in the
second parameter of psfe then we get an error message. Let us consider the functional equation
given in Example 1, it is easy to see that equation (4.1.24) belongs to class (4.1.1) but does not
satisfy (4.1.25). In such a situation the algorithm outputs an error message. If we would like to
solve equation (4.1.24) with our algorithm, we have to use the input

> psfe(F(x+y)-F(x)-F(y)-xf(x+y)-xf(-x-y), [xf(x+y), xf(-x-y)]);

We obtain the output,

> Error, (in psfe) No solution or wrong data input.

However, provided that the input is given in a correct form, we obtain the polynomial
solutions of the functional equation given in the first parameter of psfe. The algorithm applies
Lemma 3.1.1 and Theorem 4.1.1 to determine k(the potential degree of f). If k 6= 0 then the
algorithm takes into account Remark 4.1.2 and applies conditions of Theorem 4.1.2 up to k = 2
to obtain the exact polynomial solutions.

4.3 Computer code

with(ArrayTools):
psfe:=proc(h,t)
local a,fd,fdd,ch,eb,ap,app,tt,tp,dsa,
L,R,k,ff,FF,p,i,nm,mn,j,dsp,dse,aa,
bb,hgg,hg,hgb,d,jj,ghh,gh,ee;
a:= convert(h,list): fd:=Array([]):
fdd:=Array([]): L:=0:
R:=0: k:=0: ff :=0: FF:=0:
ch:=Array([]): eb:=Array([]):
for i in [op(a), op(t)]do
if nops(i) = 1 then
Append(ch, op(0, i))

else
Append(ch, op(0, op(nops(i), i)))

end if:
end do:
for i in convert(ch, set) do

if has([F, xf, yf], i) = false then
ERROR("No solution or wrong data input")
end if:

end do:
if ‘subset‘(convert([F(x+y), -F(x), -F(y)], set), convert(a, set)) = false then
ERROR("No solution or wrong data input")

end if:
if ‘subset‘(convert(-t, set), convert(a, set)) = false then

print(convert(-t, set));
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print(convert(a, set));
ERROR("No solution or wrong data input")

end if:
if nops(convert(a, set))-nops(convert(t, set)) <> 3 then

ERROR("No solution or wrong data input")
end if:
for i in t do
if nops(i) = 1 then
ap := op(0, i);
if has(ap, xf) or has(ap, yf) then
Append(eb, coeff(ap, yf)*coeff(op(1, i), y));
Append(eb, coeff(ap, xf)*coeff(op(1, i), x))

end if:
else
app := op(0, op(2, i));
if has(app, xf) or has(app, yf) then
Append(eb, coeff(app, yf)*op(1, i)*coeff(op(1, op(nops(i), i)), y));
Append(eb, coeff(app, xf)*op(1, i)*coeff(op(1, op(nops(i), i)), x))

end if:
end if:

end do:
if convert(eb, set) <> {0} and convert(eb, set) <> {} then
ERROR("No solution or wrong data input")

end if:
for p in a do
if has(p, [F(x), yf(x)]) then
L := L-p

else
R := R+p

end if:
end do:
fd := Array([]); fdd := Array([]);
for i in convert(R, list) do
if nops(i) = 1 then
nm := op(nops(i), i)

else
nm := op(1, op(nops(i), i))

end if:
if has(nm, x) or has(nm, y) then
Append(fd, [coeff(nm, x)*identify, coeff(nm, y)*identify])

end if:
end do:
for i in convert(R, list) do
if nops(i) = 1 then
nm := op(0, i)

end if:
if has(nm, yf) or has(nm, xf) then
Append(fdd, [coeff(op(nops(i), i), x)*identify, coeff(op(nops(i), i), y))

end if:
end do:
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for i in convert(R, list) do
if nops(i) = 2 then
mn := op(0, op(nops(i), i))

end if:
if has(mn, yf) or has(mn, xf) then
Append(fdd, [coeff(op(1, op(nops(i), i)), x)*identify, coeff(op(1, op(i)))

end if:
end do:
if nops(L) = 1 then

k := k+numelems(convert(fd, set))+numelems(convert(fdd, set))-2
else

k := k+numelems(convert(fd, set))+numelems(convert(fdd, set))-1
end if:
for j from 0 by 1 to k do

if j =0 then
ff:=ff+0;
FF:=FF + A[1](x);

end if:
end do:
dsp := Array([]); dse := Array([]);
for i in t do
if nops(i) = 1 then
aa := op(0, i);
if has(aa, xf) or has(aa, yf)) then
tt := Array([coeff(aa, xf), coeff(aa, yf)]);
tp := Array([coeff(op(1, i), x), coeff(op(1, i), y)]);
Append(dsp, tt(1)+tt(2));
Append(dse, tp(1)+tp(2))

end if:
else
bb := op(0, op(2, i));
if has(bb, xf) or has(bb, yf) then
tt := Array([coeff(bb, xf)*op(1, i), coeff(bb, yf)*op(1, i)]);
tp := Array([coeff(op(1, op(nops(i), i)), x), coeff(op(1,op(nops(i)]);
Append(dsp, tt(1)+tt(2));
Append(dse, tp(1)+tp(2))

end if:
end if:

end do:
dsa := nops(t);
if k = 0 then
k := 0

elif op(convert(convert(dse, set), list)) then
k := 2

else
k := 1

end if:
if ghh<> 0 then
ee:=0;
for i in t do
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if nops(i) = 1 then
aa:=op(0,i);
if has(aa,xf) or has(aa,yf) then
ee:= ee + (coeff(aa,xf)+coeff(aa,yf))*(coeff(op(1,i),x));

end if:
else
bb:=op(0, op(2,i));
if has(bb,xf) or has(bb,yf) then
ee:=ee+((coeff(bb,xf)*op(1,i))+(coeff(bb,yf)*op(1,i)));

end if:
end if:

end do:
if ee<>0 then
ff:=ff + c[d]x^(d);
FF:= FF+ee/(2^(d+1)-2)c[d]x^(d+1);

else
ff:=ff + x^(d-1)B[d](x);
FF:= FF+ x^(d)*B[d](x);

end if:
end if:
print(’f(x)’=sort(ff,x,ascending));
print(’F(x)’=sort(FF,x,ascending));
end proc

4.4 Application of the computer code

Now we show some examples of functional equations belonging to the class (4.1.1) solved with
the use of the above computer code.

Example 4.4.1. (cf. Example 2 in [28]) Let the pair of functions (F, f) mapping from R to R
satisfy the equation

F (x+ y)− F (x)− F (y) = yf(x) + xf(y) (4.4.1)

Observe that equation (4.4.1) is the equation considered by Włodzimierz Fechner and Eszter
Gselmann in [11].
INPUT:
> psfe(F(x+y)-F(x)-F(y)-xf(y)-yf(x), [xf(y), yf(x)]);
OUTPUT:

f(x) = B1(x) + c2x
2

F (x) = A1(x) + xB1(x) + 1
3c2x

3

where A1 and B1 are arbitrary additive functions, and c2 ∈ R is an arbitrary constant.

Example 4.4.2. (cf. Example 3 in [28]) Let the pair of functions (F, f) mapping from R to R
satisfy the equation

F (x+ y)− F (x)− F (y) = xf(3y) + yf(3x) (4.4.2)

INPUT:
> psfe(F(x+y)-F(x)-F(y)-xf(3y)-yf(3x), [xf(3y), yf(3x)]);
OUTPUT:

f(x) = B1(x) + c2x
2
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F (x) = A1(x) + 3xB1(x) + 3c2x3

where A1 and B1 are arbitrary additive functions, and c2 ∈ R is an arbitrary constant.

Example 4.4.3. (cf. Example 4 in [28]) Let the pair of functions (F, f) mapping from R to R
satisfy the equation

F (x+ y)− F (x)− F (y) = xf(y) (4.4.3)

INPUT:
> psfe(F(x+y)-F(x)-F(y)-xf(y), [xf(y)]);
OUTPUT:

f(x) = c1x

F (x) = A1(x) + 1
2c1x

2

where A1 is an arbitrary additive functions, and c1 ∈ R is an arbitrary constant.

Example 4.4.4. (cf. Example 5 in [28]) Let the pair of functions (F, f) mapping from R to R
satisfy the equation

F (x+ y)− F (x)− F (y) = 3xf(2y)− 4yf(3x) (4.4.4)

INPUT:
> psfe(F(x+y)-F(x)-F(y)-3xf(2y)+4yf(3x), [3xf(2y), -4yf(3x)]);
OUTPUT:

f(x) = c1x

F (x) = A1(x)− 3c1x2

where A1 is an arbitrary additive functions, and c1 ∈ R is an arbitrary constant.

Example 4.4.5. (cf. Example 6 in [28]) Let the pair of functions (F, f) mapping from R to R
satisfy the equation

F (x+ y)− F (x)− F (y) = xf(3y) + yf(3x) + xf(y) + yf(x) + xf(2y) + yf(2x) (4.4.5)

INPUT:
> psfe(F(x+y)-F(x)-F(y)-xf(3y)-yf(3x)-xf(y)-yf(x)-xf(2y)-yf(2x), [xf(3y), yf(3x), xf(y), yf(x), xf(2y),
yf(2x)]);
OUTPUT:

f(x) = B1(x) + c2x
2

F (x) = A1(x) + 6xB1(x) + 14
3 c2x

3

where A1 and B1 are arbitrary additive functions, and c2 ∈ R is an arbitrary constant.

Remark 4.4.1. (cf. Remark 2.3 in [28]) We end the chapter by proposing the future work. The
full strength of Lemma 3.1.1 is yet to be utilize in estimating the degree of at least one of the
polynomial functions that satisfy a given functional equation defined on a commutative group.

Therefore, Let G and H be commutative groups (for some results concerning the noncommu-
tative groups see [34] and [3]). Let γi ∈ G, αi, βi, cj, dj ∈ Q. Further, let (F, f) : G → H, we
intend to find the solutions of a more general functional equation of the type (4.4.6)

n∑
i=1

γiF (aix+ biy) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy) (4.4.6)
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and compare the solutions with the system of equations
n∑
i=1

γiF (aix+ biy) = yf(x) + xf(y)

F (x+ y)− F (x)− F (y) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy)
(4.4.7)

Let us observe that equation (4.1.1) is a special case of equation (4.4.6), in particular we have
G = H = R, n = 3, γ1 = a1 = b1 = a2 = b3 = 1, a3 = b2 = 0 and γ2 = γ3 = −1.
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Chapter 5

Further results on a new class of
functional equations satisfied by
polynomial functions

5.1 Generalized both sides of the Fechner-Gselmann equa-
tion

In this chapter, we consider the following functional equation
n∑
i=1

γiF (aix+ biy) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy), (5.1.1)

for every x, y ∈ R, γi, αj, βj ∈ R, and ai, bi, cj, dj ∈ Q, and its special forms. Thus we con-
tinue investigations presented in Chapter 3 (see [25]) where we generalized the left-hand side of
Fechner-Gselmann equation and those from Chapter 4 (see [28]) where the right-hand side of
the Fechner-Gselmann equation was studied. It turns out that under some assumptions on the
parameters involved, the pair (F, f) solving equation (5.1.1) happens to be a pair of polynomial
functions.

The idea to study this generalized equation was motivated by the growing number of its par-
ticular forms studied by several mathematicians; let us quote here a few of them J. Aczél [1],
J. Aczél and M. Kuczma [2], C. Alsina, M. Sablik, and J. Sikorska [4], W. Fechner and E.
Gselmann [11], B. Koclȩga-Kulpa, T. Szostok and S. Wa̧sowicz [18], [19] and [20], T. Nadhomi,
C. P. Okeke, M. Sablik and T. Szostok [25], and C. P. Okeke and M. Sablik [28]. From their
studies, it turns out that these particular forms have real applications.

In this chapter we continue the investigation proposed in Chapter 4 (see Remark 4.4.1). In
particular, to obtain the polynomial solutions of equation (5.1.1) and compare the solutions
with the solutions of equations

n∑
i=1

γiF (aix+ biy) = yf(x) + xf(y), (5.1.2)

and
F (x+ y)− F (x)− F (y) =

m∑
j=1

(αjx+ βjy)f(cjx+ djy). (5.1.3)

The first of the special forms of (5.1.1) we solved is the functional equation considered by B.
Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz in [19] namely,

F (x)− F (y) = (x− y)[α1f(c1x+ d1y) + · · ·+ αmf(cmx+ dmy)]. (5.1.4)
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It is worth noting that (5.1.4) stems from a well known quadrature rule used in numerical
analysis. Further, we also considered other special forms of (5.1.1) namely,

F (y)− F (x) =
1

y − x

∫ y

x
f(t) dt = (y − x)

m∑
j=1

βjf(cjx+ (1− cj)y), (5.1.5)

F (y)− F (x) = (y − x)f(x+ y), (5.1.6)

F (x)− F (y) = (x− y)f
(
x+y
2

)
, (5.1.7)

and
2F (y)− 2F (x) = (y − x)

(
f
(
x+y
2

)
+ f(x)+f(y)

2

)
. (5.1.8)

Equation (5.1.5) is the functional equation connected with the Hermite-Hadamard inequality in
the class of continuous functions, and it is related to the approximate integration. Note that the
quadrature rules of an approximate integration can be obtained by the appropriate specification
of the coefficients of (5.1.5). Moreso, equations (5.1.6) and (5.1.7) are variations of Lagrange
mean value theorem with many applications in mathematical analysis, computational mathe-
matics and other fields. Finally, equation (5.1.8) stems from the descriptive geometry used for
graphical constructions.

In addition we will show that the main results obtained by B. Koclȩga-Kulpa, T. Szostok,
S. Wa̧sowicz in [19] (see Theorem 1 and Theorem 2 in [19]) are special forms of our results.
In line with their papers [18] and [20], we would use our method to obtain the polynomial
functions connected with the Hermite-Hadamard inequality in the class of continuous functions.
Furthermore, we would show that the functional equation considered by J. Aczél in [1] and J.
Aczél, M. Kuczma in [2] (cf. Theorem 5 in [2]) are special forms of equation (5.1.1). Moreso,
we would show that our method can be used to solve the functional equation arising from the
geometric problems considered by C. Alsina, M. Sablik and J. Sikorska in [4].Now observe that
equations (5.1.1), (5.1.2) and (5.1.3) are obvious generalization of the equation considered by
W. Fechner and E. Gselmann in [11] namely,

F (x+ y)− F (x)− F (y) = xf(y) + yf(x). (5.1.9)

In Chapter 3 (see [25]) T. Nadhomi, C. P. Okeke, M. Sablik and T. Szostok investigated equa-
tion (5.1.2) and in Chapter 4 (see [28]) C. P. Okeke and M. Sablik investigated equation (5.1.3).
In our works it turns out that under some mild assumption, the pair (F, f) of functions satisfies
equations (5.1.2), and (5.1.3) are polynomial functions, and in some important cases, just the
usual polynomials (even though we assume no regularity of solutions a priori).

While proving our main results in Chapter 3 (see [25]) and Chapter 4 (see [28]), we observed
that the behaviour of solutions depends on the sequences (Lk)k∈N∪{0} and (Rk)k∈N∪{0} given by

Lk =
n∑
i=1

γi(ai + bi)k+1, (5.1.10)

and
Rk =

m∑
j=1

(αj + βj)(cj + dj)k, (5.1.11)

respectively, for all k ∈ N ∪ {0}.
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5.1.1 Main Results

We begin by showing that in general equation (5.1.1) has polynomial functions as solutions. To
this name, rewrite (5.1.1) in the following form:

∑
(ai,bi)

γiF (aix+ biy) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy),

which allows us to write the left-hand side in the form∑
{(ai,bi):ai 6=06=bi}

γiF (aix+ biy) +
∑

{(ai,0):ai 6=0}
γiF (aix)

+
∑

{(0,bi):06=bi}
γiF (biy) =

m∑
j=1

(αjx+ βjy)f(cjx+ djy). (5.1.12)

We excluded above the summands where ai = 0 = bi. Such a summand can be omitted, indeed.
Namely suppose that an = bn = 0. Let F be a solution of (5.1.1), and assume that n ­ 2
(otherwise the whole problem becomes trivial). If we put x = y = 0 in (5.1.1) then we get(

n−1∑
i=1

γi + γn

)
F (0) = 0. (5.1.13)

From (5.1.13) we infer that either F (0) = 0 or
n−1∑
i=1

γi + γn = 0. In the former the constant

F (0) disappears, and the left hand side of (5.1.1) satisfies our assumptions. In the latter case,
if moreover γn = 0, the situation is analogous. Let us consider therefore the case(

n−1∑
i=1

γi + γn = 0
)
∧ (γn 6= 0) .

Observe that
n−1∑
i=1

γi 6= 0, and

γnF (0) =
n−1∑
i=1

γi
γn

n−1∑
i=1

γi

F (0).

Hence (5.1.1) may written in the form

n−1∑
i=1

γi

F (aix+ biy) + γn
n−1∑
i=1

γi

F (0)

 =
m∑
j=1

(αjx+ βjy)f(cjx+ djy).

Substituting F̃ (z) := F (z) + γn
n−1∑
i=1

γi

F (0) we obtain

n−1∑
i=1

γiF̃ (aix+ biy) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy),

where (ai, bi) 6= (0, 0), i ∈ {1, · · · , n− 1}.

From (5.1.12) we see that there are three essential groups of terms on left-hand side, the first
group contains the summands containing values of F at the points aix+ biy, where ai 6= 0 6= bi.
The second group contains those summands in which bi = 0, and the third one those in which
ai = 0. We saw in Chapter 3 (see Example 3.2.1), that if the first and the third groups are
empty, and the second one consists of two pairs (1, 0) and (−1, 0) and the corresponding γ’s
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are 1 and −1, then arbitrary even function F yields a solution to (5.1.12), together with f = 0.
Thus in general there is no chance that we obtain polynomiality of F. However, a closer look
shows that we can state some positive claims.

Namely, rewrite again (5.1.12) in the form

∑
i∈I1

ϕi(aix+ biy) + ϕI(x) + ϕII(y) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy), (5.1.14)

and assume that there is a j ∈ {1, . . . ,m} such that

det
(
αj βj
cj dj

)
6= 0, and dj 6= 0. (5.1.15)

Then it is possible to perform the change of variables cjx + djy = z, x = w. It remains to
express (x, y) in terms of (z, w) and to rewrite (5.1.14) in the form

Cf(z)w = Pf,ϕI ,ϕII ,{ϕi:i∈I1}(z, w),

where Pf,ϕI ,ϕII ,{ϕi:i∈I1} is a polynomial function in z and w, with coefficients depending on
f, ϕI , ϕII and ϕi, i ∈ I1. We can apply Lemma 3.1.1 to get the polynomiality of f.

Thus the right-hand side of (5.1.12) is a polynomial in x and y, say Q(x, y). In other words we
have ∑

i∈I1
ϕi(aix+ biy) + ϕI(x) + ϕII(y) = Q(x, y). (5.1.16)

If ϕI 6= 0 then we may rewrite the above in the form

ϕI(x) = − ∑
i∈I1

ϕi(aix+ biy)− ϕII(y) +Q(x, y), (5.1.17)

whence by induction we obtain that ϕI is a polynomial function in x. Actually, assuming that
Q is a polynomial of order say k in x, we apply the operator ∆, k + 1 times to both sides of
equation (5.1.17). We get

∆h1,...,hk+1ϕI(x) = − ∑
i∈I1

∆h1,...,hk+1ϕi(aix+ biy) + ϕ̃II(y) +R(y), (5.1.18)

where R is a polynomial function in y (which remains after annihilating the x part of Q(x, y)).
Now, denoting ∆h1,...,hk+1ϕI by ϕ and ∆h1,...,hk+1ϕi by fi, as well as ϕ̃II(y) +R(y) by f, we get
the equation from the Székelyhidi’s result(see (2.2.2)). We use it to infer that ϕ is a polynomial
function, whence polynomiality of ϕI = F follows.

If we knew that ϕI(x) = DF (x) for some constants D then we are done. Analogously,
if ϕII(y) 6= 0 with similar argument as above we get polynomiality of ϕII = F. But even if
ϕI(x) 6= DF (x) or ϕII(y) 6= EF (y) for some constants E and D, we can still look at the first
summand on the left-hand side of (5.1.16). Then it is enough to see whether the first sum is
non zero and admits z = ai0x+ bi0y, w = x for some i0 and to rewrite (5.1.16) in the form

ϕi0(z) = − ∑
i 6=i0

ϕi(eiz + fiw)− ϕI(w)− ϕII(giz + hiw) + Q̃(z, w), (5.1.19)

and hence we see, similarly as before, that F has to be a polynomial function.

Therefore, it is enough to assume that

1. There exist a j ∈ {1, · · · ,m} such that (5.1.15) holds and
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2. ϕI = DF or,

3. ϕII = EF or,

4. for some i0 ∈ {1, · · · , n} we have ai0 6= 0 6= bi0 ,

to get polynomiality of both f and F.

Having a result of this kind, it is now enough to assume that the pair of functions (F, f)
satisfying equation (5.1.1) are monomials. However, from equations (5.1.2) and (5.1.3), we may
assume that a characteristic feature of equation (5.1.1) is the dependence of the existence of
solutions on the sequences given by (5.1.10) and (5.1.11), respectively. Hence, we proceed to
next theorem.

Theorem 5.1.1. (cf. Theorem 2.1 in [26]) Suppose γi, αj, βj ∈ R, ai, bi, cj, dj ∈ Q, i ∈ {1, . . . , n}, j ∈
{1, . . . ,m}. Let (Lk)k∈N∪{0} and (Rk)k∈N∪{0} be defined by (5.1.10) and (5.1.11) respectively.
Assume that Lk, Rk 6= 0 for some k ∈ N ∪ {0}, and equation (5.1.1) is satisfied by the pair
(F, f) : R −→ R of monomial functions of order k + 1 and k, respectively.

(i) if k = 0 then f = 0 = F or f = A0 6= 0 and F (x) = R0
L0
A0x; in the latter case necessarily

R0
L0

n∑
i=1

γiai =
m∑
j=1

αj, (5.1.20)

and
R0
L0

n∑
i=1

γibi =
m∑
j=1

βj. (5.1.21)

(ii) if k 6= 0 then either f = F = 0 is the only solution of (5.1.1), or f is an arbitrary additive
function while F is given by F (x) = Rk

Lk
xf(x), x ∈ R, when the below equations holds

Rk
Lk

n∑
i=1

γia
k+1
i =

m∑
j=1

αjc
k
j , (5.1.22)

Rk
Lk

n∑
i=1

γib
k+1
i =

m∑
j=1

βjd
k
j , (5.1.23)

and

Rk
Lk

n∑
i=1

(
k+1
p

)
γia

p
i b
k+1−p
i =

m∑
j=1

(
k
p

)
βjc

p
jd
k−p
j +

m∑
j=1

(
k
p−1

)
αjc

p−1
j dk+1−pj , (5.1.24)

for each p ∈ {1, · · · , k}. Furthermore, for non-trivial f we see that either

(a)
m∑
j=1

βjc
p
jd
k−p
j =

m∑
j=1

αjc
p−1
j dk+1−pj for each p ∈ {1, · · · , k}, and f is an arbitrary k-

monomial function, or

(b)
m∑
j=1

βjc
p
jd
k−p
j 6=

m∑
j=1

αjc
p−1
j dk+1−pj for each p ∈ {1, · · · , k}, and f is necessarily a con-

tinuous monomial function of order k and so is F of order k + 1.

Proof. Suppose that k = 0. Then f = const = A0 and F is additive. Putting x = y in (5.1.1)
we get

L0F (x) =
m∑
j=1

(αj + βj)xA0,

i.e.
F (x) = R0

L0
xA0 = Cx, (5.1.25)
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for every x ∈ R, since L0, R0 6= 0, thus F is a continuous function. Substituting (5.1.25) into
(5.1.1) we obtain

C
(

n∑
i=1

γiai

)
x+ C

(
n∑
i=1

γibi

)
y = A0

(
m∑
j=1

αj

)
x+ A0

(
m∑
j=1

βj

)
y,

for all x, y ∈ R, whence formulae (5.1.20) and (5.1.21) easily follow. Observe that it is impossible
to have

n∑
i=1

γiai =
n∑
i=1

γibi = 0. (5.1.26)

Indeed, in such a case L0 = 0, which contradicts our assumption.

Suppose that k = 1, we obtain that f = A1 is additive and F = B∗2 is a quadratic function,
or in other words diagonalization of a biadditive function. Putting x = y in (5.1.1) we obtain
(taking into account the rational homogeneity of f and F )

L1B
∗
2(x) =

(
m∑
j=1

(αj + βj)(cj + dj)
)
xA1(x),

whence,
L1F (x) = R1xA1(x),

for every x ∈ R. Keeping in mind that L1 6= 0 and denoting E1 = R1
L1

we get

F (x) = E1xA1(x),

for every x ∈ R. Substituting the above into (5.1.1) we obtain

E1

(
n∑
i=1

γia
2
i

)
xA1(x) + E1

(
n∑
i=1

γib
2
i

)
yA1(y)

+E1
(

n∑
i=1

γiaibi

)
xA1(y) + E1

(
n∑
i=1

γiaibi

)
yA1(x)

=
(

m∑
j=1

αjcj

)
xA1(x) +

(
m∑
j=1

βjdj

)
yA1(y)

+
(

m∑
j=1

αjdj

)
xA1(y) +

(
m∑
j=1

βjcj

)
yA1(x). (5.1.27)

Comparing the terms with the same degrees we obtain(
E1

(
n∑
i=1

γia
2
i

)
−
(

m∑
j=1

αjcj

))
xA1(x) = 0, (5.1.28)(

E1

(
n∑
i=1

γib
2
i

)
−
(

m∑
j=1

βjdj

))
yA1(y) = 0, (5.1.29)(

E1

(
n∑
i=1

γiaibi

)
−
(

m∑
j=1

αjdj

))
xA1(y)

=
((

m∑
j=1

βjcj

)
− E1

(
n∑
i=1

γiaibi

))
yA1(x). (5.1.30)

Observe that (5.1.28) holds if either A1 = 0 or

E1

(
n∑
i=1

γia
2
i

)
=

m∑
j=1

αjcj. (5.1.31)
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Similarly, (5.1.29) holds if either A1 = 0 or

E1

(
n∑
i=1

γib
2
i

)
=

m∑
j=1

βjdj. (5.1.32)

Finally, (5.1.30) holds if either A1 = 0 or,

2E1
(

n∑
i=1

γiaibi

)
=

m∑
j=1

βjcj +
m∑
j=1

αjdj. (5.1.33)

Now if A1 = 0 then F = 0. Let us consider the non-zero solutions of (5.1.1). Then all equations
(5.1.31), (5.1.32) and (5.1.33) hold. Note that it is impossible that

n∑
i=1

γia
2
i =

n∑
i=1

γib
2
i =

n∑
i=1

γiaibi = 0.

In fact, in such a situation we would have L1 = 0, which contradicts our assumption. Moreover,
substituting (5.1.33) into (5.1.30) we get(

m∑
j=1

βjcj −
m∑
j=1

αjdj

)
(xA1(y)− yA1(x)) = 0, (5.1.34)

for all x, y ∈ R. From (5.1.34) we see that either

m∑
j=1

βjcj =
m∑
j=1

αjdj,

which leads to a situation where A1 can be an arbitrary (in particular discontinuous) additive
function and we get that the pair (F, f) is a solution of (5.1.1), or

yA1(x) = xA1(y),

for all x, y ∈ R. Putting y = 1 in the above equation we have

A1(x) = xA1(1),

for every x ∈ R, hence f and F are continuous.

Now, let us pass to the situation where k ­ 2. In general, if k ­ 2 and the pair (F, f) satisfies
(5.1.1) then

f(x) = A∗k(x),

for every x ∈ R, and hence
F (x) = Rk

Lk
xA∗k(x),

for every x ∈ R. Denote Ek = Rk
Lk

, we can write (5.1.1) as

Ek
n∑
i=1

γi(aix+ biy)A∗k(aix+ biy) =
m∑
j=1

(αjx+ βjy)A∗k(cjx+ djy),

or

Ek
n∑
i=1

γi

[
aix

(
k∑
p=0

(
k
p

)
api b

k−p
i Ak(xp, yk−p)

)

+ biy

(
k∑
p=0

(
k
p

)
api b

k−p
i Ak(xp, yk−p)

)]

=
m∑
j=1

(αjx+ βjy)
(

k∑
p=0

(
k
p

)
cpjd

k−p
j Ak(xp, yk−p)

)
,
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whence

Ek
n∑
i=1

γi

[(
k∑
p=0

(
k
p

)
ap+1i bk−pi xAk(xp, yk−p)

)]

+Ek
n∑
i=1

γi

[(
k∑
p=0

(
k
p

)
api b

k+1−p
i yAk(xp, yk−p)

)]

=
m∑
j=1

αj

(
k∑
p=0

(
k
p

)
cpjd

k−p
j xAk(xp, yk−p)

)

+
m∑
j=1

βj

(
k∑
p=0

(
k
p

)
cpjd

k−p
j yAk(xp, yk−p)

)
,

or

Ek
n∑
i=1

γia
k+1
i xA∗k(x) + Ek

n∑
i=1

γi

[(
k−1∑
p=0

(
k
p

)
ap+1i bk−pi xAk(xp, yk−p)

)]

+Ek
n∑
i=1

γib
k+1
i yA∗k(y) + Ek

n∑
i=1

γi

[(
k∑
p=1

(
k
p

)
api b

k+1−p
i yAk(xp, yk−p)

)]

=
m∑
j=1

αjc
k
jxA

∗
k(x) +

m∑
j=1

αj

(
k−1∑
p=0

(
k
p

)
cpjd

k−p
j xAk(xp, yk−p)

)

+
m∑
j=1

βjd
k
jyA

∗
k(y) +

m∑
j=1

βj

(
k∑
p=1

(
k
p

)
cpjd

k−p
j yAk(xp, yk−p)

)
,

or

Ek
n∑
i=1

γia
k+1
i xA∗k(x) + Ek

n∑
i=1

γi

[(
k∑
p=1

(
k
p−1

)
api b

k+1−p
i xAk(xp−1, yk+1−p)

)]

+Ek
n∑
i=1

γib
k+1
i yA∗k(y) + Ek

n∑
i=1

γi

[(
k∑
p=1

(
k
p

)
api b

k+1−p
i yAk(xp, yk−p)

)]

=
m∑
j=1

αjc
k
jxA

∗
k(x) +

m∑
j=1

αj

(
k∑
p=1

(
k
p−1

)
cp−1j dk+1−pj xAk(xp−1, yk+1−p)

)

+
m∑
j=1

βjd
k
jyA

∗
k(y) +

m∑
j=1

βj

(
k∑
p=1

(
k
p

)
cpjd

k−p
j yAk(xp, yk−p)

)
,

for all x, y ∈ R. Comparing terms of equal degrees we have the following equations(
Ek

n∑
i=1

γia
k+1
i −

m∑
j=1

αjc
k
j

)
xA∗k(x) = 0, (5.1.35)

(
Ek

n∑
i=1

γib
k+1
i −

m∑
j=1

βjd
k
j

)
yA∗k(y) = 0, (5.1.36)

(
Ek

n∑
i=1

(
k
p−1

)
γia

p
i b
k+1−p
i −

m∑
j=1

(
k
p−1

)
αjc

p−1
j dk+1−pj

)
xAk(xp−1, yk+1−p)

=
(

m∑
j=1

(
k
p

)
βjc

p
jd
k−p
j − Ek

n∑
i=1

(
k
p

)
γia

p
i b
k+1−p
i

)
yAk(xp, yk−p), (5.1.37)

for p ∈ {1, · · · , k} and all x, y ∈ R. Now, we observe that if (5.1.35) holds then either Ak = 0
or

Ek
n∑
i=1

γia
k+1
i =

m∑
j=1

αjc
k
j . (5.1.38)
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Similarly, (5.1.36) holds if either Ak = 0 or

Ek
n∑
i=1

γib
k+1
i =

m∑
j=1

βjd
k
j . (5.1.39)

Finally, (5.1.37) holds if either Ak = 0 or

Ek
n∑
i=1

(
k+1
p

)
γia

p
i b
k+1−p
i =

m∑
j=1

(
k
p

)
βjc

p
jd
k−p
j +

m∑
j=1

(
k
p−1

)
αjc

p−1
j dk+1−pj , (5.1.40)

for p ∈ {1, · · · , k}. Assume from now on that we are interested in nontrivial solutions of
(5.1.1), that is when Ak 6= 0 and equations (5.1.38), (5.1.39) and (5.1.40) holds. Observe that
is impossible to have

n∑
i=1

γia
k+1
i =

n∑
i=1

γib
k+1
i =

n∑
i=1

(
k+1
p

)
γia

p
i b
k+1−p
i = 0,

for each p ∈ {1, · · · , k}. Indeed, in such a case we would have that Lk = 0, which contradicts
our assumption. Now, substituting (5.1.40) into (5.1.37)(

m∑
j=1

βjc
p
jd
k−p
j −

m∑
j=1

αjc
p−1
j dk+1−pj

)
(xAk(xp−1, yk+1−p)− yAk(xp, yk−p)) = 0, (5.1.41)

for p ∈ {1, · · · , k} and all x, y ∈ R. Now from (5.1.41) we see that either

m∑
j=1

βjc
p
jd
k−p
j =

m∑
j=1

αjc
p−1
j dk+1−pj ,

for each p ∈ {1, · · · , k}, which leads to a situation where Ak can be an arbitrary additive
function and we get that the pair (F, f) is a solution of (5.1.1) or

xAk(xp−1, yk+1−p) = yAk(xp, yk−p), (5.1.42)

for p ∈ {1, · · · , k} and all x, y ∈ R. Now, using (5.1.42) for p ∈ {1, · · · , k} we arrive at

ykA∗k(x) = yk−1 [yA∗k(x)] = yk−1
[
xAk(xk−1, y)

]
= · · · = xkA∗k(y),

for every x, y ∈ R, in other words, putting y = 1 we obtain

A∗k(x) = A∗k(1)xk, (5.1.43)

for every x ∈ R, which means that Ak is continuous for k ­ 2 and thus ends the proof.

Remark 5.1.1. (cf. Remark 2.1 in [26]) We note here that in equations (5.1.1) and (5.1.10),
if f = 0 and k ∈ N ∪ {0} with

Lk =
n∑
i=1

γi(ai + bi)k+1 = 0,

then F is not necessarily equal to zero. Of course this does not contradict Theorem 5.1.1 because
Lk 6= 0. Therefore, we state the below propositions.

Proposition 5.1.1. (cf. Proposition 2.2 in [26]) Let γi ∈ R, ai, bi ∈ Q, i ∈ {1, · · · , n}. Let
(Lk)k∈N∪{0} be defined by (5.1.10). Assume that k = 0 such that

L0 =
n∑
i=1

γi(ai + bi) = 0, (5.1.44)

holds then either f = F = 0 is the only solution of (5.1.1) or,
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(a) If f = 0 and F = const = A0 where A0 is any real number is the solution to (5.1.1) then
n∑
i=1

γi = 0.

(b) If f = 0 and F = A1 is an additive function is the solution to (5.1.1) then
n∑
i=1

γiai =
n∑
i=1

γibi = 0.

Proof. Suppose that (5.1.44) holds. Let f = 0 and F = const = A0 where A0 is any real
number. Substituting this in equation (5.1.1) we have

n∑
i=1

γiA0 = 0,

this holds if either A0 = 0 or
n∑
i=1

γi = 0. Now for non trivial solutions of (5.1.1) we have that

A0 6= 0 and
n∑
i=1

γi = 0.

Finally, suppose that (5.1.44) holds. Let f = 0 and F = A1 be additive. Substituting this
in equation (5.1.1) we get (taking into account the rational homogeneity of A1)

n∑
i=1

γiA1(aix+ biy) = 0,

i.e.
n∑
i=1

γiaiA1(x) +
n∑
i=1

γibiA1(y) = 0.

Comparing terms of the same degree on both sides of the above equation, we obtain
n∑
i=1

γiaiA1(x) = 0,

for all x ∈ R, and symmetrically
n∑
i=1

γibiA1(y) = 0,

for all y ∈ R. Both of these equations hold if either A1 = 0 or
n∑
i=1

γiai =
n∑
i=1

γibi = 0. Now for

non trivial solutions of (5.1.1) we have that A1 6= 0 and
n∑
i=1

γiai =
n∑
i=1

γibi = 0.

Proposition 5.1.2. (cf. Proposition 2.3 in [26]) Let γi ∈ R, ai, bi ∈ Q, i ∈ {1, · · · , n}. Let
(Lk)k∈N∪{0} be defined by (5.1.10). Assume that k ∈ N such that

Lk =
n∑
i=1

γi(ai + bi)k+1 = 0, (5.1.45)

holds then either f = F = 0 is the only solution of (5.1.1) or, f = 0 and F = A∗k+1 is an
arbitrary k + 1 additive function when

n∑
i=1

(
k+1
p

)
γia

p
i b
k+1−p
i = 0,

for each p ∈ {0, · · · , k + 1}.

Remark 5.1.2. (cf. Remark 2.2 in [26]) We note that if f = 0, k = 0, and
n∑
i=1

γi = 0 then

F = A0 where A0 is any real number is also a solution to (5.1.1).

Remark 5.1.3. (cf. Remark 2.3 in [26]) Since we are interested in the pair (F, f) of polynomial
functions that satisfies (5.1.1), thus, we mention here that assumptions (5.1.44), (5.1.45) and
Remark 5.1.2 are essential when f = 0. Therefore, if f = 0 and k ∈ N ∪ {0} with Lk 6= 0 then
f = F = 0 is the only solution to (5.1.1).
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5.2 Applications

5.2.1 Functional equations connected with quadrature rules

Now, we show that the main results obtained by B. Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz
in [19] (see Theorem 1 and Theorem 2 in [19]) are indeed special forms of our results.

Theorem 5.2.1. (cf. Theorem 1 in [19] and Theorem 2.4 in [26]) The functions F, f : R→ R
satisfy

8F (y)− 8F (x) = yf(x) + 3yf
(
x+2y
3

)
+ 3yf

(
2x+y
3

)
+

yf(y)− xf(x)− 3xf
(
x+2y
3

)
− 3xf

(
2x+y
3

)
− xf(y) (5.2.1)

for x, y ∈ R, if and only if
f(x) = ax3 + bx2 + cx+ d

and
F (x) = 1

4ax
4 + 1

3bx
3 + 1

2cx
2 + dx+ e

for all x ∈ R and a, b, c, d, e ∈ R.

Proof. Suppose that the pair (F, f) satisfies equation (5.2.1), then putting y = x + y in the
equation we get

8F (x+ y)− 8F (x) = yf(x) + 3yf
(
3x+2y
3

)
+ 3yf

(
3x+y
3

)
+ yf(x+ y). (5.2.2)

Now rearranging (5.2.2) in the form

yf(x) + 8F (x) = 8F (x+ y)− 3yf
(
3x+2y
3

)
− 3yf

(
3x+y
3

)
− yf(x+ y), (5.2.3)

and applying Lemma 3.1.1, we get I0,0 = {(id, id)}, I0,1 = {(id, 23id), (id, 13id), (id, id)}, ψ0,0,(id,id) =
F, ψ0,1,(id, 23 id)

= −f, ψ0,1,(id, 13 id) = −f, ψ0,1,(id,id) = −f, ϕ0 = F, ϕ1 = f. We also have K0 = I0,0,

K1 = I0,1, and K0 ∪ K1 = {(id, 23id), (id, 13id), (id, id)}. Therefore, ϕ1 = f is a polynomial
function of degree at most m = 5 i.e.

m = card(K0 ∪K1) + card(K1)− 1 = 3 + 3− 1 = 5.

Observe that (5.2.1) is a special form of (5.1.1), thus we have that F is a polynomial function.
Now we check conditions of Theorem 5.1.1. If k = 0, then f(x) = d, for some constant d ∈ R
and all x ∈ R, further from (5.1.20) and (5.1.21) we have

R0
L0

2∑
i=1

γiai =
8∑
j=1

αj

and
R0
L0

2∑
i=1

γibi =
8∑
j=1

βj.

Hence, R0
L0

= 1, and consequently F (x) = dx for some constant d ∈ R and all x ∈ R. If k = 1
we get,

R1
L1

2∑
i=1

γia
2
i =

8∑
j=1

αjcj,

R1
L1

2∑
i=1

γib
2
i =

8∑
j=1

βjdj,
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and
R1
L1

2∑
i=1

2γiaibi = 0 =
8∑
j=1

βjcj +
8∑
j=1

αjdj,

thus, R1
L1

= 1
2 and also,

8∑
j=1

βjcj = 4 6= −4 =
8∑
j=1

αjdj

then by Theorem 5.1.1, we infer that the monomial functions F, f are continuous, therefore
f(x) = cx and F (x) = 1

2cx
2 for some constant c ∈ R and all x ∈ R. Now let k = 2 then we

have,
R2
L2

2∑
i=1

γia
3
i =

8∑
j=1

αjc
2
j ,

R2
L2

2∑
i=1

γib
3
i =

8∑
j=1

βjd
2
j ,

and
R2
L2

2∑
i=1

(
3
p

)
γia

p
i b
3−p
i = 0 =

8∑
j=1

(
2
p

)
βjc

p
jd
2−p
j +

8∑
j=1

(
2
p−1

)
αjc

p−1
j d3−pj ,

for each p ∈ {1, 2}. Hence, R2
L2

= 1
3 and also,

8∑
j=1

βjc
p
jd
2−p
j = 8

3 6= −
8
3 =

8∑
j=1

αjc
p−1
j d3−pj ,

for each p ∈ {1, 2}. By Theorem 5.1.1 we infer that the monomial functions F, f are continuous,
therefore f(x) = bx2 and F (x) = 1

3bx
3 for some constant b ∈ R and all x ∈ R. If k = 3, then

we obtain,
R3
L3

2∑
i=1

γia
4
i =

8∑
j=1

αjc
3
j ,

R3
L3

2∑
i=1

γib
4
i =

8∑
j=1

βjd
3
j ,

and
R3
L3

2∑
i=1

(
4
p

)
γia

p
i b
4−p
i = 0 =

8∑
j=1

(
3
p

)
βjc

p
jd
3−p
j +

8∑
j=1

(
3
p−1

)
αjc

p−1
j d4−pj ,

for each p ∈ {1, 2, 3}. Hence, R3
L3

= 1
4 and also,

8∑
j=1

βjc
p
jd
3−p
j = 2 6= −2 =

8∑
j=1

αjc
p−1
j d4−pj ,

for each p ∈ {1, 2, 3}. Again by Theorem 5.1.1 we infer that the monomial functions (F, f) are
continuous, therefore f(x) = ax3 and F (x) = 1

4ax
4 for some constant a ∈ R and all x ∈ R.

Now let k = 4 then we get,
R4
L4

2∑
i=1

γia
5
i =

8∑
j=1

αjc
4
j ,

R4
L4

2∑
i=1

γib
5
i =

8∑
j=1

βjd
4
j ,

and
R4
L4

2∑
i=1

(
5
p

)
γia

p
i b
5−p
i = 0 6=

8∑
j=1

(
4
p

)
βjc

p
jd
4−p
j +

8∑
j=1

(
4
p−1

)
αjc

p−1
j d5−pj ,

for some p ∈ {1, 2, 3, 4}. In particular take p = 1 then we see that

R4
L4

2∑
i=1

5γiaib4i = 0 6= − 427 =
8∑
j=1

4βjcjd3j +
8∑
j=1

αjd
4
j .
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Hence, this leads to f = F = 0. Finally, if k = 5, then we obtain

R5
L5

2∑
i=1

γia
6
i =

8∑
j=1

αjc
5
j ,

R5
L5

2∑
i=1

γib
6
i =

8∑
j=1

βjd
5
j ,

and
R5
L5

2∑
i=1

(
6
p

)
γia

p
i b
6−p
i = 0 6=

8∑
j=1

(
5
p

)
βjc

p
jd
5−p
j +

8∑
j=1

(
5
p−1

)
αjc

p−1
j d6−pj ,

for some p ∈ {1, 2, 3, 4, 5}. In particular take p = 1 then we see that

R5
L5

2∑
i=1

6γiaib5i = 0 6= − 827 =
8∑
j=1

5βjcjd4j +
8∑
j=1

αjd
5
j .

Hence, this leads to f = F = 0. Now taking into account Proposition 5.1.1 we see that, if

k = 0, L0 =
2∑
i=1

γi(ai + bi) = 0 then f = 0 and F = e, where e is a real number, is also a

solution to (5.2.1), because
2∑
i=1

γi = 0. Thus the general solution of equation (5.2.1) is given

by f(x) = ax3 + bx2 + cx + d and F (x) = 1
4ax

4 + 1
3bx
3 + 1

2cx
2 + dx + e where x ∈ R and

a, b, c, d, e ∈ R. To finish the proof it suffices to check that these functions satisfy equation
(5.2.1).

Theorem 5.2.2. (cf. Theorem 2 in [19] and Theorem 2.5 in [26]) The functions F, f : R→ R
satisfy

F (y)− F (x) = 1
6yf(x) + 2

3yf
(
x+y
2

)
+ 1
6yf(y)− 16xf(x)− 23xf

(
x+y
2

)
− 16xf(y) (5.2.4)

for x, y ∈ R, if and only if
f(x) = ax3 + bx2 + cx+ d

and
F (x) = 1

4ax
4 + 1

3bx
3 + 1

2cx
2 + dx+ e

for all x ∈ R and a, b, c, d, e ∈ R.

Proof. Suppose that the pair (F, f) satisfies equation (5.2.4), then putting y = x + y in the
equation we get

F (x+ y)− F (x) = 1
6yf(x) + 2

3yf
(
2x+y
2

)
+ 1
6yf(x+ y). (5.2.5)

Now rearranging (5.2.5) in the form

1
6yf(x) + F (x) = F (x+ y)− 23yf

(
2x+y
2

)
− 16yf(x+ y), (5.2.6)

and applying Lemma 3.1.1 we get, I0,0 = {(id, id)}, I0,1 = {(id, 12id), (id, id)}, ψ0,0,(id,id) = F,
ψ0,1,(id, 12 id)

= −f, ψ0,1,(id,id) = −f, ϕ0 = F, ϕ1 = f. We also have K0 = I0,0, K1 = I0,1, and
K0 ∪ K1 = {(id, 12id), (id, id)}. Therefore, ϕ1 = f is a polynomial function of degree at most
m = 3 i.e.

m = card(K0 ∪K1) + card(K1)− 1 = 2 + 2− 1 = 3.

Since (5.2.4) is a special case of (5.1.1) we know also that F is a polynomial function. Now we
check conditions of Theorem 5.1.1. If k = 0, then f(x) = d, for some constant d ∈ R and all
x ∈ R, further from (5.1.20) and (5.1.21) we have

R0
L0

2∑
i=1

γiai =
6∑
j=1

αj,
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and
R0
L0

2∑
i=1

γibi =
6∑
j=1

βj.

Hence, R0
L0

= 1, and consequently F (x) = dx for some constant d ∈ R and all x ∈ R. Now let
k = 1 we get

R1
L1

2∑
i=1

γia
2
i =

6∑
j=1

αjcj,

R1
L1

2∑
i=1

γib
2
i =

6∑
j=1

βjdj,

and
R1
L1

2∑
i=1

2γiaibi = 0 =
6∑
j=1

βjcj +
6∑
j=1

αjdj,

thus, R1
L1

= 1
2 and also,

6∑
j=1

βjcj = 1
2 6= −

1
2 =

6∑
j=1

αjdj

then by Theorem 5.1.1 we infer that the monomial functions F, f are continuous, therefore
f(x) = cx and F (x) = 1

2cx
2 for some constant c ∈ R and all x ∈ R. If k = 2 then we have

R2
L2

2∑
i=1

γia
3
i =

6∑
j=1

αjc
2
j ,

R2
L2

2∑
i=1

γib
3
i =

6∑
j=1

βjd
2
j ,

and
R2
L2

2∑
i=1

(
3
p

)
γia

p
i b
3−p
i = 0 =

6∑
j=1

(
2
p

)
βjc

p
jd
2−p
j +

6∑
j=1

(
2
p−1

)
αjc

p−1
j d3−pj ,

for each p ∈ {1, 2}. Hence, R2
L2

= 1
3 and also,

6∑
j=1

βjc
p
jd
2−p
j = 1

3 6= −
1
3 =

6∑
j=1

αjc
p−1
j d3−pj ,

for each p ∈ {1, 2}. By Theorem 5.1.1 we infer that the monomial functions F, f are continuous,
therefore f(x) = bx2 and F (x) = 1

3bx
3 for some constant b ∈ R and all x ∈ R. Finally, if k = 3,

then we obtain
R3
L3

2∑
i=1

γia
4
i =

6∑
j=1

αjc
3
j ,

R3
L3

2∑
i=1

γib
4
i =

6∑
j=1

βjd
3
j ,

and
R3
L3

2∑
i=1

(
4
p

)
γia

p
i b
4−p
i = 0 =

6∑
j=1

(
3
p

)
βjc

p
jd
3−p
j +

6∑
j=1

(
3
p−1

)
αjc

p−1
j d4−pj ,

for each p ∈ {1, 2, 3}. Hence, R3
L3

= 1
4 and also,

6∑
j=1

βjc
p
jd
3−p
j = 1

4 6= −
1
4 =

6∑
j=1

αjc
p−1
j d4−pj ,

for each p ∈ {1, 2, 3}. Again by Theorem 5.1.1 we infer that the monomial functions F, f are
continuous, therefore f(x) = ax3 and F (x) = 1

4ax
4 for some constant a ∈ R and all x ∈ R.

Now taking into account Proposition 5.1.1 we see that, if k = 0, L0 =
2∑
i=1

γi(ai + bi) = 0 then
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f = 0 and F = e where e is a real number, is also a solution to (5.2.4), since
2∑
i=1

γi = 0.

Thus the general solution of equation (5.2.4) is given by f(x) = ax3 + bx2 + cx + d and
F (x) = 1

4ax
4 + 1

3bx
3 + 1

2cx
2 + dx + e where x ∈ R and a, b, c, d, e ∈ R. To finish the proof it

suffices to check that these functions satisfy equation (5.2.4).

Remark 5.2.1. (cf. Remark 2.4 in [26]) If in (5.1.1) n = 2, γ1 = 1, γ2 = −1, a1 = b2 = 1, b1 =
a2 = 0, and βj = −αj for each j ∈ {1, · · · ,m} then we get the equation considered by B.
Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz in [19] namely,

F (x)− F (y) = (x− y)[α1f(c1x+ d1y) + · · ·+ αmf(cmx+ dmy)].

It is worth noting that (5.2.1) stems from a well known quadrature rule used in numerical
analysis.

5.2.2 Functional equations connected with Hermite-Hadamard quadra-
ture rules

In line with the papers of B. Koclȩga-Kulpa, T. Szostok in [18] and B. Koclȩga-Kulpa, T.
Szostok, S. Wa̧sowicz in [20], we now consider polynomial functions connected with Hermite-
Hadamard inequality in the class of continuous functions. The Hermite-Hadamard inequality
is given as

f
(
x+y
2

)
6 1

y−x

∫ y

x
f(t) dt 6 f(x)+f(y)

2 , (5.2.7)

for all x, y ∈ R. Rewrite now inequality (5.2.7) in the form

1
y−x

∫ y

x
f(t) dt ∈

[
f
(
x+y
2

)
, f(x)+f(y)2

]
,

for all x, y ∈ R. However, if we consider the function f(x) = x3 + x2 + x, then we have much
more detailed information namely,

1
y−x

∫ y

x
f(t) dt = 2

3f
(
x+y
2

)
+ 1
3
f(x)+f(y)
2 . (5.2.8)

Now we may rewrite (5.2.8) in the form

F (y)− F (x) = (y − x)
(
2
3f
(
x+y
2

)
+ 1
3
f(x)+f(y)
2

)
, (5.2.9)

where F ′ = f (because f is continuous). Now combining equations (5.2.8) and (5.2.9) we obtain
a more general functional equation namely,

F (y)− F (x) = 1
y−x

∫ y

x
f(t) dt = (y − x)

m∑
j=1

βjf(cjx+ (1− cj)y), (5.2.10)

for every x, y ∈ R, cj ∈ Q, and βj ∈ R with
m∑
j=1

βj = 1. This equation is related to the

approximate integration. Note that the quadrature rules of an approximate integration can be
obtained by the appropriate specification of the coefficients of (5.2.10).

Remark 5.2.2. (cf. Remark 2.5 in [26]) Observe that in (5.1.1), if n = 2, γ1 = 1, γ2 = −1, a1 =

b2 = 0, b1 = a2 = 1, αj = −βj for each j ∈ {1, · · · ,m} with
m∑
j=1

βj = 1, and dj = 1− cj for each

j ∈ {1, · · · ,m} then we obtain equation (5.2.10) which is the functional equation considered by
B. Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz in [20]. We note here that in their paper cj ∈ R.
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Since (5.2.10) is a special form of (5.1.1), we may now use our method to obtain the poly-
nomial functions of the functional equations belonging to class (5.2.10).

Theorem 5.2.3. (cf. Theorem 2.6 in [26]) The functions F, f : R→ R satisfy

F (y)− F (x) = (y − x)
(
2
3f
(
x+y
2

)
+ 1
3
f(x)+f(y)
2

)
(5.2.11)

for x, y ∈ R, if and only if
f(x) = ax3 + bx2 + cx+ d

and
F (x) = 1

4ax
4 + 1

3bx
3 + 1

2cx
2 + dx+ e

for all x ∈ R and a, b, c, d, e ∈ R.

Proof. Suppose that the pair (F, f) satisfies equation (5.2.11), then putting y = x + y in the
equation and applying Lemma 3.1.1 we get that f is a polynomial function of degree at most
3. Since (5.2.11) is a special case of (5.1.1) we know also that F is a polynomial function. Now
we rewrite equation (5.2.11) in the form,

F (y)− F (x) = 2
3yf

(
x+y
2

)
+ 1
6yf(x) + 1

6yf(y)− 23xf
(
x+y
2

)
− 16xf(x)− 16xf(y),

and check conditions of Theorem 5.1.1. If k = 0, then f(x) = d, for some constant d ∈ R and
all x ∈ R, further from (5.1.20) and (5.1.21) we have

R0
L0

2∑
i=1

γiai =
6∑
j=1

αj,

and
R0
L0

2∑
i=1

γibi =
6∑
j=1

βj.

Hence, R0
L0

= 1, thus, F (x) = dx for some constant d ∈ R and all x ∈ R. If k = 1 then we get

R1
L1

2∑
i=1

γia
2
i =

6∑
j=1

αjcj,

R1
L1

2∑
i=1

γib
2
i =

6∑
j=1

βjdj,

and
R1
L1

2∑
i=1

2γiaibi = 0 =
6∑
j=1

βjcj +
6∑
j=1

αjdj

thus, R1
L1

= 1
2 and also,

6∑
j=1

βjcj = 1
2 6= −

1
2 =

6∑
j=1

αjdj

thus by Theorem 5.1.1 we have that the monomial functions F, f are continuous, therefore
f(x) = cx and F (x) = 1

2cx
2 for some constant c ∈ R and all x ∈ R. Now let k = 2 then we

have
R2
L2

2∑
i=1

γia
3
i =

6∑
j=1

αjc
2
j ,

R2
L2

2∑
i=1

γib
3
i =

6∑
j=1

βjd
2
j ,
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and
R2
L2

2∑
i=1

(
3
p

)
γia

p
i b
3−p
i = 0 =

6∑
j=1

(
2
p

)
βjc

p
jd
2−p
j +

6∑
j=1

(
2
p−1

)
αjc

p−1
j d3−pj ,

for each p ∈ {1, 2}. Hence, R2
L2

= 1
3 and also,

6∑
j=1

βjc
p
jd
2−p
j = 1

3 6= −
1
3 =

6∑
j=1

αjc
p−1
j d3−pj ,

for each p ∈ {1, 2}. By Theorem 5.1.1 we have that the monomial functions F, f are continuous,
therefore f(x) = bx2 and F (x) = 1

3bx
3 for some constant b ∈ R and all x ∈ R. Finally, if k = 3,

then we obtain
R3
L3

2∑
i=1

γia
4
i =

6∑
j=1

αjc
3
j ,

R3
L3

2∑
i=1

γib
4
i =

6∑
j=1

βjd
3
j ,

and
R3
L3

2∑
i=1

(
4
p

)
γia

p
i b
4−p
i = 0 =

6∑
j=1

(
3
p

)
βjc

p
jd
3−p
j +

6∑
j=1

(
3
p−1

)
αjc

p−1
j d4−pj ,

for each p ∈ {1, 2, 3}. Hence, R3
L3

= 1
4 and also,

6∑
j=1

βjc
p
jd
3−p
j = 1

4 6= −
1
4 =

6∑
j=1

αjc
p−1
j d4−pj ,

for each p ∈ {1, 2, 3}. Again by Theorem 5.1.1 we infer that the monomial functions F, f are
continuous, therefore f(x) = ax3 and F (x) = 1

4ax
4 for some constant a ∈ R and all x ∈ R.

Now by Proposition 5.1.1, we see that if k = 0, L0 =
2∑
i=1

γi(ai + bi) = 0 then f = 0 and F = e

where e ∈ R is also a solution to (5.2.11), since
2∑
i=1

γi = 0. Thus the general solution of equation

(5.2.11) is given by f(x) = ax3 + bx2 + cx+ d and F (x) = 1
4ax

4 + 1
3bx
3 + 1

2cx
2 + dx+ e where

x ∈ R and a, b, c, d, e ∈ R. To finish the proof it suffices to check that these functions satisfy
equation (5.2.11).

Theorem 5.2.4. (cf. Theorem 4 in [20] and Theorem 2.7 in [26]) The functions F, f : R→ R
satisfy

F (y)− F (x) = (y − x)
(
1
4f(x) + 3

4f
(
1
3x+ 2

3y
))

(5.2.12)

for x, y ∈ R, if and only if
f(x) = ax2 + bx+ c

and
F (x) = 1

3ax
3 + 1

2bx
2 + cx+ d

for all x ∈ R and a, b, c, d ∈ R.

Proof. Suppose that the pair (F, f) satisfies equation (5.2.12), then substituting y = x + y in
the equation and applying Lemma 3.1.1 we get that f is a polynomial function of degree at
most 2. Since (5.2.12) is a special case of (5.1.1) we have that F is a polynomial function. Now
we rewrite equation (5.2.12) in the form,

F (y)− F (x) = 1
4yf(x) + 3

4yf
(
1
3x+ 2

3y
)
− 14xf(x)− 34xf

(
1
3x+ 2

3y
)
,
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and check conditions of Theorem 5.1.1. If k = 0, then f(x) = c, for some constant c ∈ R and
all x ∈ R, further from (5.1.20) and (5.1.21) we have

R0
L0

2∑
i=1

γiai =
4∑
j=1

αj,

and
R0
L0

2∑
i=1

γibi =
4∑
j=1

βj.

Hence, R0
L0

= 1, thus, F (x) = cx for some constant c ∈ R and all x ∈ R. If k = 1 then we get

R1
L1

2∑
i=1

γia
2
i =

4∑
j=1

αjcj,

R1
L1

2∑
i=1

γib
2
i =

4∑
j=1

βjdj,

and
R1
L1

2∑
i=1

2γiaibi = 0 =
4∑
j=1

βjcj +
4∑
j=1

αjdj,

thus, R1
L1

= 1
2 and also,

4∑
j=1

βjcj = 1
2 6= −

1
2 =

4∑
j=1

αjdj,

therefore by Theorem 5.1.1 we have that the monomial functions F, f are continuous, hence
f(x) = bx and F (x) = 1

2bx
2 for some constant b ∈ R and all x ∈ R. Finally, if k = 2 then we

have
R2
L2

2∑
i=1

γia
3
i =

4∑
j=1

αjc
2
j ,

R2
L2

2∑
i=1

γib
3
i =

4∑
j=1

βjd
2
j ,

and
R2
L2

2∑
i=1

(
3
p

)
γia

p
i b
3−p
i = 0 =

4∑
j=1

(
2
p

)
βjc

p
jd
2−p
j +

4∑
j=1

(
2
p−1

)
αjc

p−1
j d3−pj ,

for each p ∈ {1, 2}. Hence, R2
L2

= 1
3 and also,

4∑
j=1

βjc
p
jd
2−p
j = 1

3 6= −
1
3 =

4∑
j=1

αjc
p−1
j d3−pj ,

for each p ∈ {1, 2}. By Theorem 5.1.1 we have that the monomial functions (F, f) are contin-
uous, therefore f(x) = ax2 and F (x) = 1

3ax
3 for some constant a ∈ R and all x ∈ R. Now

by Proposition 5.1.1, we see that if k = 0, L0 =
2∑
i=1

γi(ai + bi) = 0 then f = 0 and F = d

where d ∈ R is also a solution to (5.2.12), because
2∑
i=1

γi = 0. Therefore, the general solution of

equation (5.2.12) is given by f(x) = ax2+ bx+ c and F (x) = 1
3ax

3+ 1
2bx
2+ cx+d where x ∈ R

and a, b, c, d ∈ R. To finish the proof it suffices to check that these functions satisfy equation
(5.2.12).

Now we give some examples that include known results which may be solved by the use of
our method.
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Example 5.2.1. (cf. Example 2.1 in [26]) Assume that the functions F, f : R→ R satisfy the
functional equation

F (x) = yf(x) (5.2.13)

for all x, y ∈ R.

Now we rearrange (5.2.13) in the form

yf(x)− F (x) = 0, (5.2.14)

for all x, y ∈ R. Applying Lemma 3.1.1, we can see that f is the zero function. Clearly, (5.2.13)
is a special case of (5.1.1), thus we infer that F is also a polynomial function. Now, check
conditions of Theorem 5.1.1 and taking into account Remark 5.1.3, we see that f = F = 0 is
the only solution of (5.2.13).

5.2.3 Functional equations connected with Lagrange mean value
theorem

Example 5.2.2. (J. Aczél result cf. [1] and Example 2.2 in [26]) The functions F, f : R→ R
satisfy

F (y)−F (x)
y−x = f(x+ y) (5.2.15)

for all x, y ∈ R, if and only if
f(x) = ax+ b

and
F (x) = ax2 + bx+ c

for all x, y ∈ R, and a, b, c ∈ R

Proof. Now we rewrite (5.2.15) in the form of equation (5.1.1)

F (y)− F (x) = yf(x+ y)− xf(x+ y). (5.2.16)

Suppose that the pair (F, f) satisfies (5.2.16), then rearranging (5.2.16) in the form

F (x) = F (y)− yf(x+ y) + xf(x+ y), (5.2.17)

and applying Lemma 3.1.1, we get I0,0 = {(0, id)}, I0,1 = I1,0 = {(id, id)}, ψ0,0,(0,id) = F,
ψ0,1,(id,id) = −f, ψ1,0,(id,id) = f, ϕ0 = F. We also have K0 = I0,0, K1 = I0,1 ∪ I1,0, and K0 ∪K1 =
{(0, id), (id, id)}. Therefore, ϕ0 = F is a polynomial function of degree at most m = 2 i.e.

m = card(K0 ∪K1) + card(K1)− 1 = 2 + 1− 1 = 2.

Since (5.2.16) is a special form of (5.1.1), thus we know also that f is a polynomial function.
By Theorem 5.1.1 we infer that f is at most degree 1. Now we check conditions of Theorem
5.1.1. If k = 0, then f(x) = b, for some constant b ∈ R and all x ∈ R, further from (5.1.20) and
(5.1.21) we have

R0
L0

2∑
i=1

γiai =
2∑
j=1

αj,

and
R0
L0

2∑
i=1

γibi =
2∑
j=1

βj.
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Hence, R0
L0

= 1, and consequently F (x) = bx for some constant b ∈ R and all x ∈ R. Now let
k = 1 we get

R1
L1

2∑
i=1

γia
2
i =

2∑
j=1

αjcj,

R1
L1

2∑
i=1

γib
2
i =

2∑
j=1

βjdj,

and
R1
L1

2∑
i=1

2γiaibi = 0 =
2∑
j=1

βjcj +
2∑
j=1

αjdj,

thus, R1
L1

= 1 and also,
2∑
j=1

βjcj = 1 6= −1 =
2∑
j=1

αjdj,

hence by Theorem 5.1.1 we infer that the monomial functions F, f are continuous, therefore
f(x) = ax and F (x) = ax2 for some constant a ∈ R and all x ∈ R. Now by Proposition 5.1.1,

we see that if k = 0, L0 =
2∑
i=1

γi(ai + bi) = 0 then f = 0 and F = c where c ∈ R is also a

solution to (5.2.15), because
2∑
i=1

γi = 0. Thus the general solution of equation (5.2.15) is given

by f(x) = ax + b and F (x) = ax2 + bx + c where x ∈ R and a, b, c ∈ R. To finish the proof it
suffices to check that these functions satisfy equation (5.2.15).

Remark 5.2.3. (cf. Remark 2.6 in [26]) We note here that the functional equation considered
by J. Aczél in [1] is a special case of equation (5.1.1). In particular, choose n = 2,m = 2, γ1 =
β1 = 1, γ2 = α2 = −1, α1 = β2 = 0, a1 = b2 = 0 and b1 = a2 = c1 = d1 = c2 = d2 = 1, we get

F (y)− F (x) = (y − x)f(x+ y)

Example 5.2.3. (cf. Theorem 5 in [2] and Example 2.3 in [26]) The functions F, f : R → R
satisfy

F (x)−F (y)
x−y = f

(
x+y
2

)
(5.2.18)

for all x, y ∈ R, if and only if
f(x) = ax+ b

and
F (x) = 1

2ax
2 + bx+ c

for all x, y ∈ R, and a, b, c ∈ R.

Proof. Now we rewrite (5.2.18) in the form of equation (5.1.1)

F (x)− F (y) = xf
(
x+y
2

)
− yf

(
x+y
2

)
. (5.2.19)

Suppose that the pair (F, f) satisfies (5.2.19), then rearranging (5.2.19) in the form

F (x) = F (y) + xf
(
x+y
2

)
− yf

(
x+y
2

)
, (5.2.20)

and applying Lemma 3.1.1 we get I0,0 = {(0, id)}, I1,0 = I0,1 = {(12id,
1
2id)}, ψ0,0,(0,id) = F,

ψ1,0,( 12 id,
1
2 id)

= f, ψ0,1,( 12 id,
1
2 id)

= −f, ϕ0 = F. We also have K0 = I0,0, K1 = I1,0 ∪ I0,1, and
K0 ∪K1 = {(0, id), (12id,

1
2id)}. Therefore, ϕ0 = F is a polynomial function of degree at most

m = 2 i.e.
m = card(K0 ∪K1) + card(K1)− 1 = 2 + 1− 1 = 2.
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Clearly, (5.2.19) is a special form of (5.1.1), thus we know also that f is a polynomial function.
By Theorem 5.1.1 we infer that f is at most degree 1. Now we check conditions of Theorem
5.1.1. If k = 0, then f(x) = b, for some constant b ∈ R and all x ∈ R, further from (5.1.20) and
(5.1.21) we have

R0
L0

2∑
i=1

γiai =
2∑
j=1

αj,

and
R0
L0

2∑
i=1

γibi =
2∑
j=1

βj.

Hence, R0
L0

= 1, and consequently F (x) = bx for some constant b ∈ R and all x ∈ R. Finally, let
k = 1 we get

R1
L1

2∑
i=1

γia
2
i =

2∑
j=1

αjcj,

R1
L1

2∑
i=1

γib
2
i =

2∑
j=1

βjdj,

and
R1
L1

2∑
i=1

2γiaibi = 0 =
2∑
j=1

βjcj +
2∑
j=1

αjdj,

thus, R1
L1

= 1
2 and also,

2∑
j=1

βjcj = −12 6=
1
2 =

2∑
j=1

αjdj

then by Theorem 5.1.1 we infer that the monomial functions F, f are continuous, therefore
f(x) = ax and F (x) = 1

2ax
2 for some constant a ∈ R and all x ∈ R. Now by Proposition 5.1.1,

we see that if k = 0, L0 =
2∑
i=1

γi(ai + bi) = 0 then f = 0 and F = c where c ∈ R is also a

solution to (5.2.18), because
2∑
i=1

γi = 0. Thus the general solution of equation (5.2.18) is given

by f(x) = ax+ b and F (x) = 1
2ax

2 + bx+ c where x ∈ R and a, b, c ∈ R. To finish the proof it
suffices to check that these functions satisfy equation (5.2.18).

Remark 5.2.4. (cf. Remark 2.7 in [26]) We note here that using our method in solving (5.2.18)
we obtained the same results as J. Aczél, M. Kuczma in [2] (cf. Theorem 5 in [2]).

5.2.4 Functional equations connected with descriptive geometry

Example 5.2.4. (cf. Example 2.4 in [26]) The functions F, f : R→ R satisfy

2F (y)− 2F (x) = (y − x)
(
f
(
x+y
2

)
+ f(x)+f(y)

2

)
(5.2.21)

for x, y ∈ R, if and only if
f(x) = ax+ b

and
F (x) = 1

2ax
2 + bx+ c

for all x ∈ R and a, b, c ∈ R.

Proof. Suppose that the pair (F, f) satisfies equation (5.2.21), then substituting y = x + y in
the equation and applying Lemma 3.1.1 we get that f is a polynomial function of degree at
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most 3. Since (5.2.21) is a special case of (5.1.1) we have that F is a polynomial function. Now
we rewrite equation (5.2.21) in the form,

2F (y)− 2F (x) = yf
(
x+y
2

)
+ 1
2yf(x) + 1

2yf(y)− xf
(
x+y
2

)
− 12xf(x)− 12xf(y),

and check conditions of Theorem 5.1.1. If k = 0, then f(x) = b, for some constant b ∈ R and
all x ∈ R, further from (5.1.20) and (5.1.21) we have

R0
L0

2∑
i=1

γiai =
6∑
j=1

αj,

and
R0
L0

2∑
i=1

γibi =
6∑
j=1

βj.

Hence, R0
L0

= 1, thus, F (x) = bx for some constant b ∈ R and all x ∈ R. If k = 1 then we get

R1
L1

2∑
i=1

γia
2
i =

6∑
j=1

αjcj,

R1
L1

2∑
i=1

γib
2
i =

6∑
j=1

βjdj,

and
R1
L1

2∑
i=1

2γiaibi = 0 =
6∑
j=1

βjcj +
6∑
j=1

αjdj,

thus, R1
L1

= 1
2 and also,

6∑
j=1

βjcj = 3
2 6= −

3
2 =

6∑
j=1

αjdj,

hence by Theorem 5.1.1 we have that the monomial functions F, f are continuous, therefore
f(x) = ax and F (x) = 1

2ax
2 for some constant a ∈ R and all x ∈ R. Now let k = 2 then we get

R2
L2

2∑
i=1

γia
3
i =

6∑
j=1

αjc
2
j ,

R2
L2

2∑
i=1

γib
3
i =

6∑
j=1

βjd
2
j ,

and
R2
L2

2∑
i=1

(
3
p

)
γia

p
i b
3−p
i = 0 6=

6∑
j=1

(
2
p

)
βjc

p
jd
2−p
j +

6∑
j=1

(
2
p−1

)
αjc

p−1
j d3−pj ,

for some p ∈ {1, 2}. In particular take p = 1 then we see that

R2
L2

2∑
i=1

3γiaib2i = 0 6= −14 =
6∑
j=1

2βjcjdj +
6∑
j=1

αjd
2
j .

Hence, this leads to f = F = 0. Finally, if k = 3, then we obtain

R3
L3

2∑
i=1

γia
4
i =

6∑
j=1

αjc
3
j ,

R3
L3

2∑
i=1

γib
4
i =

6∑
j=1

βjd
3
j ,

and
R3
L3

2∑
i=1

(
4
p

)
γia

p
i b
4−p
i = 0 6=

6∑
j=1

(
3
p

)
βjc

p
jd
3−p
j +

6∑
j=1

(
3
p−1

)
αjc

p−1
j d4−pj ,
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for some p ∈ {1, 2, 3}. In particular take p = 1 then we see that

R3
L3

2∑
i=1

4γiaib3i = 0 6= −14 =
6∑
j=1

3βjcjd2j +
6∑
j=1

αjd
3
j .

Again by Theorem 5.1.1, this leads to f = F = 0. Now by Proposition 5.1.1, we see that if

k = 0, L0 =
2∑
i=1

γi(ai + bi) = 0 then f = 0 and F = c where c ∈ R is also a solution to (5.2.21),

because
2∑
i=1

γi = 0. Thus the general solution of equation (5.2.21) is given by f(x) = ax+ b and

F (x) = 1
2ax

2 + bx+ c where x ∈ R and a, b, c ∈ R. To finish the proof it suffices to check that
these functions satisfy equation (5.2.21).

Remark 5.2.5. (cf. Remark 2.8 in [26]) We note here that (5.2.21) is the functional equation
arising from the geometric problems considered by C. Alsina, M. Sablik and J. Sikorska in [4].

Remark 5.2.6. (cf. Remark 2.9 in [26]) Let us observe that when n = 3, γ1 = a1 = b1 = a2 =
b3 = 1, a3 = b2 = 0, γ2 = γ3 = −1, m = 2, α1 = β2 = d1 = c2 = 1, and α2 = β1 = c1 = d2 = 0,
equations (5.1.1), (5.1.2) and (5.1.3) have the same polynomial solutions (see Chapter 3( cf.[25])
and Chapter 4 (cf. [28])) as equation (5.1.9) considered by W. Fechner and E. Gselmann in
[11]. In addition, the polynomial solutions of equations (5.1.2) or (5.1.3) are also polynomial
solutions of equation (5.1.1) but the converse is not necessarily true.

Remark 5.2.7. (cf. Remark 2.10 in [26]) To this end, we conclude that the main results of
Chapter 3 (see Theorem 3.2.2 in Chapter 3 and Theorem 3.3 in [25]) and Chapter 4 (see
Theorem 4.1.2 in Chapter 4 and Theorem 2.2 in [28]) are special forms of our results. Moreso,
we mention here that the pair of functions (F, f) mapping from R to R that satisfies equations
(5.1.1), (5.1.2) and (5.1.3) respectively, were obtained by assuming that x = y ∈ R. From
Chapter 4(cf. [28]), we see that it is possible to use a computer program to solve functional
equations in particular, equation (5.1.3). Therefore, these leads to the following questions:

a) Which are the polynomial functions F, f mapping R to R that satisfy equations (5.1.1),
(5.1.2), (5.1.3) and (5.1.9) when x 6= y?

b) Is it possible to formulate a robust computer algorithm which determines the polynomial
solutions of equation (5.1.1) and the polynomial solutions of question a)?
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Chapter 6

Characterizing locally polynomial
functions on convex subsets of linear
spaces

Several mathematicians attempted to solve equations characterizing the polynomial functions
of restricted domains, see e.g. J. Ger ([13]) or Z. Daróczy and Gy. Maksa ([9]). Here we in-
troduce the notion of locally polynomial functions, satisfying a conditional Fréchet equation
on convex subsets of linear space. We prove that locally polynomial functions are solutions to
some rather general functional equations. Using Roman Ger’s result, we infer that locally they
are the restrictions of polynomial functions defined on the whole space.

We begin by proving a Lemma that generalizes the results of I. Pawlikowska [30](Theorem 2.1).

6.1 Sablik-Okeke Lemma

Lemma 6.1.1. (cf. Lemma 1.3 in [29]) Let X and Y be two linear spaces over a field K ⊂ R,
and let K ⊂ X be an absolutely convex set with 0 ∈ algintK. Fix N ∈ N ∪ {0} and M ∈
{−1, 0, 1, · · · } = N ∪ {−1, 0}. Further, if M ­ 0, assume that for each m ∈ {0, · · · ,M} and
each p ∈ {0, · · · ,m}, the set Ip,m−p = {(α, β) ∈ K × K : |α| + |β| 6 1, β 6= 0} is finite. If the
functions ϕi : K → SAi(X;Y ), i ∈ {0, · · · , N}, and, if M ­ 0,
ψp,m−p,(α,β) : K → SAm(X;Y ), (α, β) ∈ Ip,m−p,m ∈ {0, · · · ,M}, p ∈ {0, · · · ,m} satisfy the
equation

N∑
i=0

ϕi(x)(yi) =


0, M = −1,

M∑
m=0

m∑
p=0

∑
(α,β)∈Ip,m−p

ψp,m−p,(α,β) (αx+ βy) (xp, ym−p), M ­ 0 (EM)

for every x, y ∈ K, then there exists a p′ ∈ N, such that ϕN is a locally polynomial function of
order at most equal

M∑
m=0

card
(

M⋃
s=m

Ks

)
− 1,

on the set 1
p′
K, where Ks =

s⋃
p=0

Ip,s−p for each s ∈ {0, · · · ,M}, if M ­ 0. Moreover, if M = −1,

N∑
i=0

ϕi(x)(yi) = 0

then ϕN is the zero function.
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Proof. Let us fix an N ∈ N ∪ {0}. We prove the lemma using induction with respect to M.

1. Let us start with M = −1, therefore we consider the equation

N∑
i=0

ϕi(x)(yi) = 0, (E-1)

because if M = −1 then the right-hand side is identically 0. Now applying Lemma 2.2.2
we infer that Bi(y) = ϕi(x)(yi) = 0, for every y ∈ K. Hence ϕi(x) = 0, i ∈ {0, · · · , N},
for every x ∈ K. In particular ϕN is a polynomial function identically equal to 0 and our
assertion holds (ϕN is a local polynomial of degree 6 0).

2. Assume now that Lemma 6.1.1 holds for some M > −1, that is, if (EM) is satisfied for all
x, y ∈ K then there exists a p̃ ∈ N, such that ϕN is locally polynomial function of order
at most equal to
M∑
m=0

card(
M⋃
s=m

Ks)− 1, on the set 1
p̃
K.

3. Suppose now that (EM+1) holds onK.We are going to show that there is a p̂ ∈ N, such that
ϕN | 1

p̂
K is locally polynomial. In fact we are going to show that for some ` ∈ N and every m,

∆`
mϕN is locally polynomial on 1

p̃r
K, where r > max

{
`+1,max

{
|α|+ |β|+ ∑̀

i=1

∣∣∣αβi−αiβ
βi

∣∣∣} :

(α, β) ∈ J

}
, and p̃ is as in 2. Here J =

M+1⋃
s=0

Ks =
M+1⋃
s=0

s⋃
p=0

Ip,s−p, and ` above is the

cardinality of
M+1⋃
p=0

Ip,M+1−p which is greater or equal to 1 (because
M+1⋃
p=0

Ip,M+1−p 6= ∅) but

finite. We may write
M+1⋃
p=0

Ip,M+1−p = {(α1, β1), · · · , (α`, β`)}.

4. Let us choose a u ∈ 1
r
K and apply the operator Γ(u,v) : 1

r
K × 1

r
K → Y to both sides

of (EM+1), where Γ(u,v)Φ(x, y) = Φ(x + u, y + v) − Φ(x, y), u, v, x, y ∈ 1
r
K. Let us put

v := −α1
β1
u. Consider the left-hand side of (EM+1), we get
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Γ(
u,
−α1
β1

u

)ϕN(x)(yN) +
N−1∑
i=0

Γ(
u,
−α1
β1

u

)ϕi(x)(yi)

= ϕN(x+ u)

(y − α1
β1
u

)N− ϕN(x)(yN) +
N−1∑
i=0

Γ(
u,
−α1
β1

u

)ϕi(x)(yi)

=
N∑
k=0

(
N
k

)
ϕN(x+ u)

(
yN−k,

(
−α1
β1
u
)k)
− ϕN(x)(yN)

+
N−1∑
i=0

Γ(
u,
−α1
β1

u

)ϕi(x)(yi) = ∆uϕN(x)(yN)

+
N∑
k=1

(
N
k

)
ϕN(x+ u)

(
yN−k,

(
−α1
β1
u
)k)

+
N−1∑
i=0

Γ(
u,
−α1
β1

u

)ϕi(x)(yi)

= ∆uϕN(x)(yN) +
N∑
k=1

(
N
k

)
∆uϕN(x)

(
yN−k,

(
−α1
β1
u
)k)

+
N∑
k=1

(
N
k

)
ϕN(x)

(
yN−k,

(
−α1
β1
u
)k)

+
N−1∑
i=0

Γ(
u,
−α1
β1

u

)ϕi(x)(yi)

= ϕ̂N(x)(yN) +
N−1∑
i=0

Γ(
u,
−α1
β1

u

)ϕi(x)(yi)

+
N∑
k=1

(
N
k

)
(ϕ̂N(x) + ϕN(x))

(
yN−k,

(
−α1
β1
u
)k)

,

where ϕ̂N = ∆uϕN . Observe that applying the Γ operator to the left-hand side of (EM+1)
we get the left-hand side of (EM) but with ϕ̂N instead of ϕN and additional summands
which is a polynomial in y but of degree lower than N. Therefore, we deduce that applying
the Γ operator to the left-hand side of (EM+1) does not change the degree of the polynomial
in y.

5. Let us see what happens with the right-hand side of (EM+1), we have

(*) Γ(
u,
−α1
β1

u

) [M+1∑
m=0

m∑
p=0

∑
(α,β)∈Ip,m−p

ψp,m−p,(α,β) (αx+ βy) (xp, ym−p)
]

= Γ(
u,
−α1
β1

u

) [ M∑
m=0

m∑
p=0

∑
(α,β)∈Ip,m−p

ψp,m−p,(α,β) (αx+ βy) (xp, ym−p)
]

+Γ(
u,
−α1
β1

u

) [M+1∑
p=0

∑
(α,β)∈Ip,M+1−p

ψp,M+1−p,(α,β) (αx+ βy) (xp, yM+1−p)
]

=
M∑
m=0

m∑
p=0

∑
(α,β)∈Ip,m−p

Γ(
u,
−α1
β1

u

) [ψp,m−p,(α,β) (αx+ βy) (xp, ym−p)
]

+
M+1∑
p=0

∑
(α,β)∈Ip,M+1−p

Γ(
u,
−α1
β1

u

) [ψp,M+1−p,(α,β) (αx+ βy) (xp, yM+1−p)
]

=
M∑
m=0

m∑
p=0

∑
(α,β)∈Ip,m−p

Γ(
u,
−α1
β1

u

) [ψp,m−p,(α,β) (αx+ βy) (xp, ym−p)
]

+
M+1∑
p=0

Γ(
u,
−α1
β1

u

) [ψp,M+1−p,(α1,β1) (α1x+ β1y) (xp, yM+1−p)
]

+
M+1∑
p=0

∑
(α,β)∈Ip,M+1−p
(α,β)6=(α1,β1)

Γ(
u,
−α1
β1

u

) [ψp,M+1−p,(α,β) (αx+ βy) (xp, yM+1−p)
]
.
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The first summand is a polynomial function of degree ¬M. Now let consider the second
summand. Let us note that for every p ∈ {0, . . . ,M + 1} the action of Γ(

u,
−α1
β1

u

) leads to

reduction of terms
ψp,M+1−p,(α1,β1) (α1x+ β1y) (xp, yM+1−p),

and what is left is a polynomial of degree ¬M.

Finally, passing to the last term in (∗), let us fix a q ∈ {0, . . . ,M + 1}, and a couple
(α, β) ∈ Iq,M+1−q \ {(α1, β1)}, say (α2, β2). Now, applying the operator Γ(

u,
−α1
β1

u

) to

ψq,M+1−q,(α2,β2) (α2x+ β2y) (xq, yM+1−q)

we obtain

Γ(
u,
−α1
β1

u

) [ψq,M+1−q,(α2,β2) (α2x+ β2y) (xq, yM+1−q)
]

=

ψq,M+1−q,(α2,β2)

(
α2(x+ u) + β2

(
y − α1

β1
u

))
(x+ u)q,

(
y − α1

β1
u

)M+1−q−
ψq,M+1−q,(α2,β2) (α2x+ β2y) (xq, yM+1−q) =

ψq,M+1−q,(α2,β2)

(
α2x+ β2y +

α2β1 − α1β2
β1

u

)
(x+ u)q,

(
y − α1

β1
u

)M+1−q−
ψq,M+1−q,(α2,β2) (α2x+ β2y) (xq, yM+1−q) =∑

(s′,t′)∈{0,··· ,q}×{0,··· ,M+1−q}\{(0,0)}
ψq,M+1−q,(α2,β2)

(
α2x+ β2y +

α2β1 − α1β2
β1

u

)
xq−s′ , us′ , yM+1−q−t′ ,(−α1

β1
u

)t′+

∆α2β1−α1β2
β1

u
ψq,M+1−q,(α2,β2) (α2x+ β2y) (xq, yM+1−q).

Observe that the first group of summands are polynomials of degree ¬ M, and only the
last summand is a polynomial of degree
q +M + 1− q = M + 1, with the coefficients ψ̂q,M+1−q = ∆α2β1−α1β2

β1
u
ψq,M+1−q.

Now, let us apply the operator Γ(u,−α2
β2

u) to the right-hand side. As we saw before it does

not increase the degree of all but the last summand, and in the latter case we obtain (as
previously) the vanishing of terms

ψq,M+1−q,(α2,β2) (α2x+ β2y) (xq, yM+1−q).

Obviously, this can be extended to the case of arbitrary (α, β) ∈ Iq,M+1−q for q ∈
{0, · · · ,M + 1} in an analogous way.
Therefore, applying the operators Γ(

u,
−α2
β2

u

), · · · ,Γ(u,−αmβm
u) to both sides of (EM+1) we

get on the left-hand side
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∆m
u ϕN(x)(yN)+ polynomial in y of degree < N,

and on the right-hand side a sum of polynomial functions in (x, y) of degree not exceeding
M.

6. By induction hypothesis we infer that ∆m
u ϕN is locally polynomial of an order at most

n =
M∑
m=0

card
(

M⋃
s=m

Ks

)
− 1

on 1
r
K, for arbitrary u ∈ 1

r
K. Hence, we infer that there exists a p̃ ∈ N such that for any

(x, v) ∈ X ×X with

x, x+ v, · · · , x+ (n+ 1)v ∈ 1
p̃r
K,

and every u ∈ 1
r
K the equality

∆n+1
v ∆m

u ϕN(x) = 0 (**)

holds. By the absolute convexity of K we have the following property, if

x, x+ v, · · · , x+ (n+m+ 1)v ∈ 1
p̃r
K

then
v ∈ 1

n+m+ 1
(

1
p̃r
K −X) ⊂ 1

p̃r
K ⊂ 1

r
K.

Setting u = v in (∗∗) we obtain

∆n+m+1
v ϕN(x) = ∆n+1

v ∆m
v ϕN(x) = 0.

It follows that ϕN is locally polynomial of order at most

n+m =
M∑
m=0

card
(

M⋃
s=m

Ks

)
− 1

on the set 1
p′
K where p′ = p̃r.

Now note that in Lemma (6.1.1), if

M⋃
s=0

Ks =
{

(α, β) ∈
M⋃
s=0

s⋃
p=0

Ip,s−p : α ∈ [0, 1), β = 1− α
}
,

i.e. αx + βy is a convex combination of x and y in (EM), then we can weaken the assumption
on the set K by not requiring that 0 ∈ algintK. This is stated in the following corollary.

Corollary 6.1.1. (cf. Corollary 1.2 in [29]) Let X and Y be two linear spaces over a field
K ⊂ R and let ∅ 6= K ⊂ X be a convex set such that x0 ∈ algintK. Fix N ∈ N ∪ {0}
and M ∈ N ∪ {−1, 0}. Further, if M ­ 0, assume that for each m ∈ {0, · · · ,M} and each
p ∈ {0, · · · ,m}, the set Ip,m−p ⊂ [0, 1) ∩K is finite.
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If the functions ϕi : K → SAi(X;Y ), i ∈ {0, · · · , N} and, if M ­ 0,
ψp,m−p,α : K → SAm(X;Y ), α ∈ Ip,m−p, 0 ¬ p ¬ m,m ∈ {0, . . . ,M} satisfy

N∑
i=0

ϕi(x)(yi) =


0, M = −1,

M∑
m=0

m∑
p=0

∑
α∈Ip,m−p

ψp,m−p,α (αx+ (1− α)y) (xp, ym−p), M ­ 0 (6.1.1)

for every x, y ∈ K, then there exists a convex subset K′ ⊂ K such that x0 ∈ algintK′, and ϕN is
a locally polynomial function of order at most equal to

M∑
m=0

card
(

M⋃
s=m

Ks

)
− 1,

on K′, where Ks =
s⋃

p=0
Ip,s−p for each s ∈ {0, · · · ,M}, if M ­ 0. Moreover, if M = −1,

N∑
i=0

ϕi(x)(yi) = 0

then ϕN is the zero function.

Using the results of R. Ger from [14] and taking into account representation of polynomial
functions (cf. [35]) we get also

Corollary 6.1.2. (cf. Corollary 1.3 in [29]) Under the assumptions of Corollary 6.1.1 there
exist a convex subset K′ ⊂ K ⊂ X such that x0 ∈ algintK′, and functions Ai ∈ SAi(X;Y ), i ∈
{0, · · · , `}, such that for every x ∈ K′

ϕN(x) = A0 + A1(x) + A∗2(x) + · · ·+ A∗`(x),

where

` =
M∑
m=0

card
(

M⋃
s=m

Ks

)
− 1,

and Ks =
s⋃

p=0
Ip,s−p for each s ∈ {0, · · · ,M}. The functions Ai, i ∈ {0, · · · , `} are defined

uniquely and A∗`(x) = A` (x, · · · , x)︸ ︷︷ ︸
` times

.

6.2 Applications.

6.2.1 Local equation of Fechner-Gselmann .

Let’s see how the machinery works and consider again the Fechner-Gselmann equation

F (x+ y)− F (x)− F (y) = xf(y) + yf(x) (6.2.1)

which was supposed to hold for all x, y ∈ R.
If we assume that x, y ∈ K ⊂ X- a linear space over the field K ⊂ R and introduce the following
substitutions:

F̃ (x) = F (2x) ,

(which is defined on 12K), then it is easy to see that (6.2.1) is equivalent to

F̃
(
x+ y

2

)
− F̃

(
x

2

)
− F̃

(
y

2

)
= xf(y) + yf(x), (6.2.2)
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but now quite a natural domain is an interval, or convex subset of R.
Let us rewrite (6.2.2) in the form

f(x)y + F̂ (x) = −f(y)x− F̂ (y) + F̃
(
x+ y

2

)
, (6.2.3)

where F̂ (x) = F̃ (x2 ). Let us observe that (6.2.3) is a special case of (EM). Now its enough to take
N = 1 = M, ϕ1 = f, ϕ0 = F̂ , I0,1 = ∅, I0,0 = {(12id,

1
2id), (0, id)}, I1,0 = {(0, id)}, ψ0,0,( 12 , 12 ) =

F̃ , ψ0,0,(0,1) = −F̂ , ψ1,0,(0,1) = −f. Then K0 = I0,0 = {(12id,
1
2id), (0, id)}, K1 = I1,0 ∪ I0,1 =

{(0, id)}, K0 ∪ K1 = {(12id,
1
2id), (0, id)}, hence, by Lemma 6.1.1 we get that f is a locally

polynomial function of order at most card(K0 ∪K1) + card(K1)− 1 = 2 + 1− 1 = 2, on the set
1
2K, and so ` = 2 now using Corollary 6.1.2 we infer that

f(x) = A0 + A1(x) + A∗2(x),

for all x ∈ 12K, where Ai ∈ SAi(X;Y ), i ∈ {0, · · · , 2}. As in Chapter 3 (cf. [25]) we can also
assume that F̂ is a locally polynomial functions of order at most 3, hence by Corollary 6.1.2
we have that

F̂ (x) = B̂0 + B̂1(x) + B̂∗2(x) + B̂∗3(x),

for all x ∈ 12K, where B̂i ∈ SAi(X;Y ), i ∈ {0, · · · , 3}. Thus, it follows that F̃ is also a locally
polynomial function and can be written in the form

F̃ (x) = B0 +B1(x) +B∗2(x) +B∗3(x)

for all x ∈ K′ := 1
4K ⊂

1
2K ⊂ K, where B∗i (x) = B̂∗i (2x), Bi ∈ SAi(X;Y ), i ∈ {0, · · · , 3}.

Now using similar argument in Chapter 3 (cf. [25]), we obtain the local solution of (6.2.2)

a) f(x) = A1(x) + a2x
2,

b) F̃ (x) = B1(x) + 4xA1(x) + 8
3a2x

3,

for all x ∈ K′, where A1, B1 are additive functions and a2 is an arbitrary constant. In [30] one
can find techniques of extending the solution from K′ to the whole set K, except may be for
the boundary.

6.2.2 J. Ger’s equation.

Joanna Ger in [13] considered the following equations, assumed to hold for all x, y ∈ I, where
I ⊂ R is a non-empty interval.

f(x)− f(y) = (x− y)
[
h
(
x+ y

2

)
+ k(x) + k(y)

]
(6.2.4)

and
xf(y)− yf(x) = (x− y)

[
h
(
x+ y

2

)
+ k(x) + k(y)

]
, (6.2.5)

where f, h, k : I → R are unknown. Equations (6.2.4) and (6.2.5) are analogous to equations
considered by T. Riedel and P. K. Sahoo in the case where I = R. Solving (6.2.4) and (6.2.5)
was crucial for answering the so called M. Merkle’s problem, formulated in [24] and reformulated
in the language of functional equations by J. Walorski in [38]. Walorski actually was solving
the equation

g(x)− g(y) = (x− y)
[
αf

(
x+ y

2

)
+ f(x) + f(y)

]
,
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where α > 0. However, he was assumming high regularity of the searched function g : I → R. J.
Ger was able to obtain the general solution of a more general equation (6.2.4) with no regularity
requirements.
Now substituting x = u+v

2 , y = u−v
2 into (6.2.4) we have

ĥ(u)v = f
(
u+ v

2

)
− f

(
u− v

2

)
−
[
k
(
u+ v

2

)
+ k

(
u− v

2

)]
v (6.2.6)

where ĥ(u) = h(u2 ). Let us observe that (6.2.6) is a special case of (EM). Now its enough to
take N = 1 = M, ϕ1 = ĥ, ϕ0 = 0, I1,0 = ∅, I0,0 = {(12id,

1
2id), (12id,−

1
2id)} = I0,1, ψ0,0,( 12 ,

1
2 )

=
f, ψ0,0,( 12 ,−

1
2 )

= −f, ψ0,1,( 12 , 12 ) = ψ0,1,( 12 ,−
1
2 )

= −k. Then K0 = I0,0 = {(12id,
1
2id), (12id,−

1
2id)}

K1 = I1,0 ∪ I0,1 = {(12id,
1
2id), (12id,−

1
2id)}, K0 ∪ K1 = {(12id,

1
2id), (12id,−

1
2id)}, hence, by

Lemma 6.1.1 we get that ĥ is a locally polynomial function of order at most card(K0 ∪K1) +
card(K1) − 1 = 2 + 2 − 1 = 3, on the set 1

p′1
I, for a p′1 ∈ N, and so ` = 3 now using Corollary

6.1.2 we infer that
ĥ(u) = Â∗3(u) + Â∗2(u) + Â1(u) + Â0

for all u ∈ 1
p′1
I, p′1 ∈ N, where Âi ∈ SAi(X;Y ), i ∈ {0, · · · , 3}. Hence it follows that h is also a

locally polynomial function and can be written in the form

h(u) = A∗3(u) + A∗2(u) + A1(u) + A0 (6.2.7)

for all u ∈ 1
2p′1
I, p′1 ∈ N, where A∗i (u) = Â∗i (2u), Ai ∈ SAi(X;Y ), i ∈ {0, · · · , 3}.

On the other hand, regrouping equation (6.2.4) we get

k(x)y − k(x)x+ f(x) = f(y) +
[
h
(
x+ y

2

)
+ k(y)

]
(x− y) (6.2.8)

Let us observe that (6.2.8) is a special case of (EM). Now applying Lemma 6.1.1 and Corollary
6.1.2 again we obtain that

k(x) = B∗3(x) +B∗2(x) +B1(x) +B0 (6.2.9)

for all x ∈ 1
p′2
I, p′2 ∈ N, where Bi ∈ SAi(X;Y ), i ∈ {0, · · · , 3}.

Let p′ = max{p′1, p′2}, and let us put y = 0 in (6.2.4) to calculate f we have

f(x) = (6.2.10)

x
[1
8
A∗3(x) +B∗3(x) +

1
4
A∗2(x)+

B∗2(x) +
1
2
A1(x) +B1(x) + A0 + 2B0

]
+ f(0)

for all x, y ∈ I ′ = 1
p′
I.

Inserting (6.2.7), (6.2.9) and (6.2.10) into (6.2.4) we obtain the equality linking A` and B`, ` ∈
{1, 2, 3}, (the constants are reduced). Comparing the summands of the same degree, we get the
following system of equations.

1
8
xA∗3(y) + xB∗3(y) =

3
8
yA3(x, y, y), (6.2.11)

1
8
yA∗3(x) + yB∗3(x) =

3
8
xA3(x, x, y), (6.2.12)

3
8
xA3(x, y, y) =

3
8
yA3(x, x, y), (6.2.13)
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1
4
xA∗2(y) + xB∗2(y) =

1
2
yA2(x, y), (6.2.14)

1
4
yA∗2(x) + yB∗2(x) =

1
2
xA2(x, y), (6.2.15)

1
2
xA1(y) + xB1(y) =

1
2
yA1(x) + yB1(x). (6.2.16)

From the equation (6.2.16) we infer the existence of a constant c ∈ R, such that 12A1(x) +
B1(x) = cx, x ∈ I ′. Denoting A(x) = 1

2A1(x), we easily see that

A1(x) = 2A(x) (6.2.17)
B1(x) = −A(x) + cx, (6.2.18)

for every x ∈ I ′. Now, if we put x = y in (6.2.14) or (6.2.15), we see that

4B∗2(x) = A∗2(x),

for x ∈ I ′. Let us insert this equality into (6.2.14) and let us multiply by 14 , side by side. We
will get after some obvious calculations

x2A∗2(y) = xyA2(x, y) = yxA2(y, x) = y2A∗2(x),

Now put y = 1, we get A∗2(x) = bx2 for all x ∈ I ′, where b = A∗2(1) ∈ R, whence it follows that
for a real constant b, we have

A∗2(x) = 4bx2 (6.2.19)
B∗2(x) = bx2, (6.2.20)

for all x ∈ I ′. Finally, let us consider (6.2.11), (6.2.12) and (6.2.13). First, from (6.2.11) or
(6.2.12), we get

4B∗3(x) = A∗3(x), (6.2.21)

for all x ∈ I ′. (We put x = y, multiply both sides by 8 and reduce the identical summands on
both sides). Now, we may substitute B∗3 into (6.2.11); after suitable reductions we may replace
the equalities (6.2.11) and (6.2.13) with the equalities

xA∗3(y) = yA3(x, y, y), (6.2.22)

xA3(x, y, y) = yA3(y, x, x). (6.2.23)

Using now the equalities (6.2.22), (6.2.23) and symmetry of A3, we obtain for all x, y ∈ I ′,

x3A∗3(y) = x2yA3(x, y, y) = y2xA3(y, x, x) = y3A∗3(x), (6.2.24)

Now put y = 1, we see that A∗3(x) = A∗3(1)x3 for all x ∈ I ′, A∗3(1) ∈ R. Let A∗3(1) = 8a, a ∈ R.
Then in view of (6.2.21) we get

A∗3(x) = 8ax3 (6.2.25)
B∗3(x) = 2ax3, (6.2.26)

for all x ∈ I ′. Let us denote β := k(0) = B0, α := −β − A0. Then

A0 + 2B0 = −β − α + 2β = β − α.
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Moreover, let d := f(0). Then for all x, y ∈ I ′ we obtain
f(x) = 3ax4 + 2bx3 + cx2 + (β − α)x+ d, x ∈ I ′,
h(x) = 8ax3 + 4bx2 + 2A(x)− (β + α), x ∈ intI ′,
k(x) = 2ax3 + bx2 − A(x) + cx+ β, x ∈ I ′.

The above solution may be extended to the whole interval I, with exception for the function
h, which may be defined arbitrarily on the boundary of I, if I = clI.
Summarizing, using our “machinery” we may obtain the result by J. Ger from [13] (Theorem
1):

Theorem 6.2.1. (cf. Theorem 1 in [13] and Theorem 2.1 in [29]) Assume that I ⊂ R is an
interval with positive length. Functions f, h, k : I → R satisfy the equation

f(x)− f(y) = (x− y)
[
h
(
x+ y

2

)
+ k(x) + k(y)

]
if, and only if 

f(x) = 3ax4 + 2bx3 + cx2 + (β − α)x+ d, x ∈ I,
h(x) = 8ax3 + 4bx2 + 2A(x)− (β + α), x ∈ intI,
k(x) = 2ax3 + bx2 − A(x) + cx+ β, x ∈ I,

where A is additive, and a, b, c, d, α, β are real constants. If I is closed, then h may be arbitrary
on the boundary of I.

6.2.3 Local case of Okeke’s equation.

In Chapter 5 (cf. [26]) we obtained the polynomial solutions of following generalized functional
equation (6.2.27), under some mild assumptions on the parameters involved

n∑
i=1

γiF (aix+ biy) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy), (6.2.27)

for every x, y ∈ R, γi, αj, βj ∈ R, and ai, bi, cj, dj ∈ Q. Here, we will consider a derivation of
(6.2.27) namely,

n∑
i=1

γiF (λix+ (1− λi)y) =
m∑
j=1

θj(αjx+ (1− αj)y)f(βjx+ (1− βj)y), (6.2.28)

for every x, y ∈ K ⊂ X-a linear space over a field K ⊂ R, K being a K-convex subset of X,
γi, θj ∈ K, and λi, αj, βj,∈ [0, 1] ∩K, i = 1, · · · , n, j = 1, · · · ,m.

We begin by showing that (6.2.28) has locally polynomial functions as solutions.

Lemma 6.2.1. (cf. Lemma 2.1 in [29]) Suppose that X is a linear space over the field K ⊂ R,
let ∅ 6= K ⊂ X be a convex set, let γi, θj ∈ K, and , λi, αj, βj,∈ [0, 1] ∩ K, i ∈ {1, · · · , n}, j ∈
{1, · · · ,m}. Suppose further that the functions F, f : K → K satisfy equation (6.2.28). If there
exists j0 ∈ {1, · · · ,m} with θj0 6= 0 such that

det
(
αj0 1− αj0
βj0 1− βj0

)
6= 0, (6.2.29)

det
(
λi 1− λi
βj0 1− βj0

)
­ 0, (6.2.30)
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and

det
(
βj 1− βj
βj0 1− βj0

)
­ 0, (6.2.31)

for every i = 1, · · · , n, j = 1, · · · ,m, then f is a locally polynomial function of order at most
equal to k − 1, on the set K′ ⊂ K, where k is the total number of distinct numbers λi, βj.

Proof. Suppose that the pair (F, f) satisfies (6.2.28), fix a j0 ∈ {1, · · · ,m} with θj0 6= 0 such
that (6.2.29),(6.2.30) and, (6.2.31) holds. Rewrite (6.2.28) in the following form

n∑
i=1

γiF (λix+ (1− λi)y) =
∑
j 6=j0

θj(αjx+ (1− αj)y)f(βjx+ (1− βj)y),

+θj0(αj0x+ (1− αj0)y)f(βj0x+ (1− βj0)y)
(6.2.32)

if βj0 = 1 then we may use Corollary (6.1.1) directly. Now assume that
βj0 ∈ [0, 1) ∩K, let z = βj0x+ (1− βj0)y and w = x and substitute in (6.2.32) we obtain

n∑
i=1

γiF
(
λiw + (1− λi)

(
z−βj0w
1−βj0

))
=

∑
j 6=j0

θj

(
αjw + (1− αj)

(
z−βj0w
1−βj0

))
f
(
βjw + (1− βj)

(
z−βj0w
1−βj0

))

+θj0

(
αj0w + (1− αj0)

(
z − βj0w
1− βj0

))
f(z)

and so,

f(z)
(
αj0−βj0
1−βj0

)
θj0w + f(z)

(
1−αj0
1−βj0

)
θj0z

=
n∑
i=1

γiF
((

1− λi−βj0
1−βj0

)
z +

(
λi−βj0
1−βj0

)
w
)

− ∑
j 6=j0

θj

(
1−αj
1−βj0

)
zf
((

1− βj−βj0
1−βj0

)
z +

(
βj−βj0
1−βj0

)
w
)

− ∑
j 6=j0

θj

(
αj−βj0
1−βj0

)
wf

((
1− βj−βj0

1−βj0

)
z +

(
βj−βj0
1−βj0

)
w
)

Using (6.2.29) we see that αj0 6= βj0 , so the coefficient (αj0−βj01−βj0
)θj0w of f(z) is different from

zero. Now by (6.2.30), (6.2.31) we get that λi, βj ­ βj0 , and since 0 ¬, λi, βj < 1, therefore we
have that λi−βj0

1−βj0
,
βj−βj0
1−βj0

∈ [0, 1) ∩ K for every i = 1, · · · , n, j = 1, · · · ,m. Hence, by Corollary
(6.1.1), f is a locally polynomial function on the set K′ ⊂ K, of order at most

card(K0 ∪K1) + card(K1)− 1 = k − 1

where K0 = I0,0 = {λi−βj01−βj0
, i = 1, · · · , n}, K1 = I1,0 ∪ I0,1 = {βj−βj01−βj0

, j 6= j0}, and k is the total
number of distinct numbers λi, βj in the set K0 ∪K1, and K1.

6.2.4 Non-symmetric version of Okeke’s equation.

From the results of Chapter 3, 4 and 5 (see [25], [28] and [26]), we may assume that also F in
equation (6.2.28) is a locally polynomial function.

Now let us assume that (6.2.28) is satisfied for real x, y from an interval K of R which addi-
tionally we assume to be symmetric around 0. Let us consider the case x 6= y ∈ K. Without
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loss of generality let x < y. Then there exist a z ∈ K such that y = x + z. Now substituting
into equation (6.2.28) we have

n∑
i=1

γiF (x+ (1− λi)z) =
m∑
j=1

θj(x+ (1− αj)z)f(x+ (1− βj)z), (6.2.33)

It is equation (6.2.33) we are going to solve.

A characteristic feature of (6.2.33) is the dependence of the existence of solutions on the be-
haviour of the sequences lk and rk given by

lk =
n∑
i=1

γi(2− λi)k+1 (6.2.34)

and,

rk =
m∑
j=1

θj(2− αj)(2− βj)k (6.2.35)

respectively, for all k ∈ N ∪ {0}.

Theorem 6.2.2. (cf. Theorem 2.2 in [29]) Let K be a non-empty convex set of a linear space X
over a field K ⊂ R. Let k ∈ N∪{0} and γi, θj ∈ K, , λi, αj, βj,∈ [0, 1]∩K ⊂ Q, i = 1, · · · , n, j =
1, · · · ,m be such that lk, rk 6= 0 is given by (6.2.34) and (6.2.35) respectively. Suppose further
that equation (6.2.33)(hence of (6.2.28)) is satisfied by the pair (F, f) : K → K of monomial
functions of order k + 1 and k respectively.

(a) if k = 0 then f = 0 = F or f = A0 6= 0 and F (x) = r0
l0
A0x; in the latter case necessarily

r0
l0

n∑
i=1

γi =
m∑
j=1

θj, (6.2.36)

and,
r0
l0

n∑
i=1

γi(1− λi) =
m∑
j=1

θj(1− αj). (6.2.37)

(b) if k > 1 then f = 0 = F, or f(x) = A∗k(x) = Ak (x, · · · , x)︸ ︷︷ ︸
k times

6= 0 is an arbitrary k-additive

symmetric function and F (x) = rk
lk
xf(x), x ∈ K.

Moreover for p ∈ {1, · · · , k}, if f 6= 0 and the below equations

rk
lk

n∑
i=1

γi =
m∑
j=1

θj, (6.2.38)

rk
lk

n∑
i=1

γi(1− λi)k+1 =
m∑
j=1

θj(1− αj)(1− βj)k, (6.2.39)

and,

rk
lk

n∑
i=1

(
k+1
p

)
γi(1− λi)p =

m∑
j=1

(
k
p−1

)
θj(1− αj)(1− βj)p−1 +

m∑
j=1

(
k
p

)
θj(1− βj)p, (6.2.40)

are satisfied then either

(i)
n∑
i=1

γi(1 − λi)p =
m∑
j=1

θj(1 − βj)p for each p ∈ {1, · · · , k}, and f is an arbitrary

k-monomial function or
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(ii)
n∑
i=1

γi(1 − λi)p 6=
m∑
j=1

θj(1 − βj)p for each p ∈ {1, · · · , k}, and f is a continuous

k-monomial function and so F is of order k + 1.

Proof. Let k = 0 such that f = const = A0 6= 0 and F is additive. Putting x = z in (6.2.33)
we have

n∑
i=1

γi(2− λi)F (x) =
m∑
j=1

θj(2− αj)xA0

i.e.,
F (x) =

r0
l0
xA0 = D0x (6.2.41)

for any x ∈ K, because D0 = r0
l0
A0 6= 0 therefore, F is a continuous function. Now substituting

(6.2.41) into (6.2.33) we get

D0
n∑
i=1

γi(x+ (1− λi)z) =
m∑
j=1

θj(x+ (1− αj)z)A0,

(
D0

n∑
i=1

γi

)
x+

(
D0

n∑
i=1

γi(1− λi)
)
z =

(
A0

m∑
j=1

θj

)
x+

(
A0

m∑
j=1

θj(1− αj)
)
z

for all x, z ∈ K. Thus nothing that D0 = r0
l0
A0 6= 0, and comparing the terms with the same

degree we obtain (6.2.36) and (6.2.37).
Let k > 1 such that f(x) = A∗k(x) and F (x) = rk

lk
xf(x), x ∈ K, satisfies (6.2.33). Set Dk = rk

lk
,

we can write (6.2.33) as

Dk

n∑
i=1

γi(x+ (1− λi)z)A∗k(x+ (1− λi)z) =
m∑
j=1

θj(x+ (1− αj)z)A∗k(x+ (1− βj)z),

or,

Dk

n∑
i=1

γi(x+ (1− λi)z)
(

k∑
p=0

(
k
p

)
(1− λi)pAk(xk−p, zp)

)

=
m∑
j=1

θj(x+ (1− αj)z)
(

k∑
p=0

(
k
p

)
(1− βj)pAk(xk−p, zp)

)
,

whence,

Dk

n∑
i=1

γixA
∗
k(x) +Dk

n∑
i=1

γi

(
k∑
p=1

(
k
p

)
(1− λi)pxAk(xk−p, zp)

)

+Dk

n∑
i=1

γi(1− λi)k+1zA∗k(z) +Dk

n∑
i=1

γi

(
k−1∑
p=0

(
k
p

)
(1− λi)p+1zAk(xk−p, zp)

)

=
m∑
j=1

θjxA
∗
k(x) +

m∑
j=1

θj

(
k∑
p=1

(
k
p

)
(1− βj)pxAk(xk−p, zp)

)

+
m∑
j=1

θj(1− αj)(1− βj)kzA∗k(z) +
m∑
j=1

θj

(
k−1∑
p=0

(
k
p

)
(1− αj)(1− βj)pzAk(xk−p, zp)

)
,

or,

Dk

n∑
i=1

γixA
∗
k(x) +Dk

n∑
i=1

γi

(
k∑
p=1

(
k
p

)
(1− λi)pxAk(xk−p, zp)

)

+Dk

n∑
i=1

γi(1− λi)k+1zA∗k(z) +Dk

n∑
i=1

γi

(
k∑
p=1

(
k
p−1

)
(1− λi)pzAk(xk−p+1, zp−1)

)

=
m∑
j=1

θj

(
k∑
p=1

(
k
p

)
(1− βj)pxAk(xk−p, zp)

)
+

m∑
j=1

θj(1− αj)(1− βj)kzA∗k(z)

+
m∑
j=1

θjxA
∗
k(x) +

m∑
j=1

θj

(
k∑
p=1

(
k
p−1

)
(1− αj)(1− βj)p−1zAk(xk−p+1, zp−1)

)
,
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for every x, z ∈ K. Now comparing terms of equal degrees leads to the following equations(
Dk

n∑
i=1

γi −
m∑
j=1

θj

)
xA∗k(x) = 0, (6.2.42)

(
Dk

n∑
i=1

γi(1− λi)k+1 −
m∑
j=1

θj(1− αj)(1− βj)k
)
zA∗k(z) = 0, (6.2.43)

and, (
Dk

n∑
i=1

(
k
p

)
γi(1− λi)p −

m∑
j=1

(
k
p

)
θj(1− βj)p

)
xAk(xk−p, zp) (6.2.44)

=
(

m∑
j=1

(
k
p−1

)
θj(1− αj)(1− βj)p−1 −Dk

n∑
i=1

(
k
p−1

)
γi(1− λi)p

)
zAk(xk−p+1, zp−1),

for p ∈ {1, · · · , k}, and for every x, z ∈ K. Observe that if (6.2.42),(6.2.43) and (6.2.44) holds
then either Ak = 0 or the equations (6.2.38),(6.2.39) and (6.2.40) are satisfied. Assume that
Ak = 0 then f = F = 0 is the only solution to (6.2.33). Now let us consider the non trivial
solutions of (6.2.33) that is when Ak 6= 0 and equations (6.2.38),(6.2.39) and (6.2.40) holds.
Substituting (6.2.40) into (6.2.44) we obtain,(

n∑
i=1

γi(1− λi)p −
m∑
j=1

θj(1− βj)p
)(

xAk(xk−p, zp)− zAk(xk−p+1, zp−1)
)

= 0 (6.2.45)

for p ∈ {1, · · · , k}, and for every x, z ∈ K. From (6.2.45) we see that either

n∑
i=1

γi(1− λi)p =
m∑
j=1

θj(1− βj)p

for p ∈ {1, · · · , k}, which leads to a situation where f = Ak 6= 0 can be an arbitrary k-monomial
function and we get that the pair (F, f) is a solution to (6.2.33) or

zAk(xk−p+1, zp−1) = xAk(xk−p, zp) (6.2.46)

for p ∈ {1, · · · , k}, and for every x, z ∈ K. Now by (6.2.46) for p ∈ {1, · · · , k}, we obtain

zkA∗k(x) = zk−1 [zA∗k(x)] = zk−1
[
xAk(xk−1, z)

]
= · · · = xkA∗k(z),

for every x, z ∈ K. Put z = 1 we get

A∗k(x) = A∗k(1)xk,

for every x ∈ K. This means that f = Ak 6= 0 is a continuous k-monomial function and so F
is of order k + 1.

We note here that in equation (6.2.28) and (6.2.34), if f = 0 and k = 0 with
n∑
i=1

γi = 0 then F

have some interesting properties. In particular,

Remark 6.2.1. (cf. Remark 2.1 in [29]) Suppose that in equation (6.2.28) and (6.2.34), f = 0,

k = 0 with
n∑
i=1

γi = 0,

a) If l0 6= 0 then F (x) = b

b) If l0 = 0 then F (x) = A(x) + b

where A is additive and b a real constant.
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Chapter 7

On symbolic computation of C.P.
Okeke functional equations using
python programming language

In functional equations theory, fewer methods exist for solving a broader class of functional
equations. In situations where such a method exists, it requires tedious computations. Therefore,
this present chapter is inspired by one of the questions posed in Chapter 5 (see Remark 5.2.7b)
and [26](see Remark 2.10b). In particular, we aim to develop a robust computer code based
on the theoretical results obtained in Chapter 5(cf. [26]), which determines the polynomial
solutions of the following functional equation,

n∑
i=1

γiF (aix+ biy) =
m∑
j=1

(αjx+ βjy)f(cjx+ djy), (7.0.1)

for every x, y ∈ R, γi, αj, βj ∈ R, and ai, bi, cj, dj ∈ Q, and its special forms. The primary
motivation for writing such a computer code is that solving even simple equations belonging to
class (7.0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a
computer code is that it allows us to solve complicated problems quickly, easily, and efficiently.
Additionally, the computer code will significantly improve the level of accuracy in calculations.
Along with that, there is also the factor of speed. Furthermore, the computer code will be
fully equipped with the functionality to solve various real-life problems, for example, the func-
tional equations stemming from quadrature rules such as the Midpoint rule, Simpson rule, and
Trapezoidal rule used in numerical analysis for integral approximation; the functional equations
connected to Lagrange mean value theorem which has many applications in mathematical anal-
ysis, computational mathematics, and other fields, and the functional equations arising from
descriptive geometry, which is still today a rigorous way to deal with graphical constructions.
We point out that the computer code will operate with symbolic calculations provided by
Python programming language, which means that it does not contain any numerical or approx-
imate methods, and it yields the exact solutions of the equations considered. We acknowledge
that using a computer programming language to solve functional equations has been studied by
fewer mathematicians. We mention here some of them, S. Baják and Z. Páles [5], and [6], G.G.
Borus and A. Gilányi [7], A. Házy [16], and [17], and C.P. Okeke and M. Sablik [28]. In their
works, they used Maple as the programming tool to obtain their results which is less flexible
in usage and constitutes only a small portion of the academic research community; however, in
this chapter, we achieved our results using Python programming language, designed to be an
easily readable, highly versatile, general-purpose, open-source, avails robustness and facilitates
the deployment of theorems into computational and symbolic frameworks. The special forms of
(7.0.1) have been studied by several mathematicians. Let us quote here a few of them, J. Aczél
[1], J. Aczél and M. Kuczma [2], C. Alsina, M. Sablik, and J. Sikorska [4], W. Fechner and E.
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Gselmann [11], B. Koclȩga-Kulpa, T. Szostok and S. Wa̧sowicz [18], [19] and [20], T. Nadhomi,
C. P. Okeke, M. Sablik and T. Szostok [25], and C. P. Okeke and M. Sablik [28].

7.1 Algorithm and Computer code

Given that the proofs of the theoretical results obtained in Chapter 5 (cf. [26]) are constructive,
therefore, we can formulate the following algorithm to solve any equation of type (7.0.1).

1) We rewrite the equation to get a form similar to (3.1.1) and apply Lemma 3.1.1 to obtain
the potential polynomial degree of one of the unknown functions, either F or f .

2) From Lemma 3.1.1, we get that

a) If the potential degree of F was obtained, then

k =
{
m− 1 if m ­ 1,
0 if m = −1, 0

(7.1.1)

whereas if the potential degree of f was obtained, then

k =
{
m if m ­ 0,
0 if m = −1.

(7.1.2)

3) Using k obtained above, we apply Theorem 5.1.1 by checking its conditions.

4) Next, we check if Proposition 5.1.1, Proposition 5.1.2, Remark 5.1.2 and Remark 5.1.3
are satisfied.

5) Finally, we combine the results obtained in steps 3 and 4 to get the exact polynomial
solutions of the functions that satisfy equations of class (7.0.1).

7.1.1 Description of the computer code

The Python code described below runs only on the Python Sagemath environment. It is im-
portant to note that the line from sage.all import * will work only on a Python with the
Sagemath installed. Our code steps are as follows:

(a) Import the following python libraries: sage.all, sys, sympy (Function and Symbol), numpy,
scipy.special (comb), and time

import sys
from sage.all import *
from sympy import Function, Symbol
import numpy as np
from scipy.special import comb
import time
x=Symbol(’x’)
y=Symbol(’y’)
f= Function(’f’)
F=Function(’F’)
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(b) We defined a python function called PSFE (·)(Polynomial Solutions of Functional Equa-
tions), where the entire code is embedded and takes in a functional equation of the form:

n∑
i=1

γiF (aix+ biy)−
m∑
j=1

(αjx+ βjy)f(cjx+ djy) = 0 (7.1.3)

where ”= 0” is not part of the input. That is, the code is executed with the command:

PSFE

(
n∑
i=1

γiF (aix+ biy)−
m∑
j=1

(αjx+ βjy)f(cjx+ djy)
)

The input has functions in terms of F or f , where f is multiplied by a variable x and/or
y, and we note that any other representation will pop an error message.

(c) The sub-python function Seperator12 (·) defined in the python function PSFE (·) sep-
arates the input into an array or list separated by ”,”.

(d) We defined another python function Left right3 (·) in PSFE (·) that transforms the
list in (c) above into the form of equation (3.1.1). Recognize N and M and apply Lemma
3.1.1 to obtain m, then the value of k is obtained by equations (7.1.1) or (7.1.2). To see
the calculation process taken by the code in applying Lemma 3.1.1, we recommend you
to see Theorem 3.2.1, Example 3.2.2 and Example 3.2.3 in Chapter 3 and Theorem 5.2.1
- 5.2.4 and Example 5.2.1 - 5.2.4 in Chapter 5.

(e) Note that (c) and (d) above are encapsulated in the Sablik Lemma (·) function con-
tained in PSFE (·). Next, we rearrange the functional equation again in the form of
equation (7.0.1), obtain the values of n,m and the parameters γi, αj, βj ∈ R, ai, bi, cj, dj ∈
Q, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. For different values of k, use Theorem 5.1.1 to obtain
the desired monomials alongside verifying if any of Proposition 5.1.1, Proposition 5.1.2,
Remark 5.1.2 and Remark 5.1.3 apply. The monomials are summed in their generic form
to give a polynomial. These processes are contained in the python function:
Theorem 1 3 Proposition 1 4 1 5 Remark 1 2 1 3(·, ·).

(f) The processes mentioned in (c), (d) and (e) combines to form PSFE (·).

def PSFE(Equation):
start_time = time.time()
k = Sablik_Lemma(Equation)
if k == "":
print(’f(x) = 0’)
print(’F(x) = 0’)

else:
Theorem_1_3_Proposition_1_4_1_5_Remark_1_2_1_3(Equation,k)

print("-%s seconds-" % round(time.time()-start_time,2))

You can download the python source code from the below GitHub URL:

https:
//github.com/CPOkeke/CPOkeke-Polynomial-Solutions-of-Functional-Equations
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or please send your request to the below e-mail address:

chisom.okeke@us.edu.pl

It is important to note that the developed python codes were based on Python version 3.8,
Sagemath 9.2, and all prerequisite requirements therein. Python and Sagemath are open-source
programming software and a little adjustment may be required in the future to get the codes
running in future versions of the aforementioned software.

7.1.2 Results of the computer code

Functional equations are mostly named after the mathematicians who discovered them. Some-
times, the functional equations are given names based on the property involved in the given
functional equation. Our developed python codes only accept inputs written in terms of vari-
ables x and/or y and functions F and/or f that belong to the functional equation of class
(7.0.1). The following are examples of well-known functional equations of class (7.0.1) solved
with the computer code. Suppose that (F, f) : R→ R,

Example 7.1.1. Fechner-Gselmann functional equatuon(cf. Theorem 3.1 in [11],
Proposition 3.2 in [25], Proposition 3.2.1 in Chapter 3, and Example 2 in [28]).

F (x+ y)− F (x)− F (y) = xf(y) + yf(x)

for all x, y ∈ R.
INPUT:
PSFE(F (x+ y)− F (x)− F (y)− x ∗ f(y)− y ∗ f(x))

OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = B1(x) + a3x

2

F (x) = A1(x) + xB1(x) + 1
3a3x

3

where a3 is a real number.
A1(x), B1(x) are arbitrary additive functions.
- 0.05 seconds -

Example 7.1.2. B. Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz in [19], considered the following
functional equations, which stems from a well-known quadrature rule used in numerical analysis.

a) see Theorem 1 in [19], Theorem 2.4 in [26] and Theorem 5.2.1 in Chapter 5

8 [F (y)− F (x)] = (y − x)
[
f(x) + 3f

(
x+2y
3

)
+ 3f

(
2x+y
3 )

)
+ f(y)

]
for all x, y ∈ R.

INPUT:
PSFE(8 ∗ (F (y)−F (x))− (y− x) ∗ (f(x) + 3 ∗ f((x+ 2 ∗ y) ∗Rational(1/3)) + 3 ∗ f((2 ∗
x+ y) ∗Rational(1/3)) + f(y)))

OUTPUT:
By Sablik Lemma f has degree at most 5
f(x) = a1 + a2x+ a3x

2 + a4x
3

F (x) = a0 + a1x+ 1
2a2x

2 + 1
3a3x

3 + 1
4a4x

4

where a0, a1, a2, a3, a4 are real numbers.
- 0.13 seconds -
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b) see Theorem 2 in [19], Theorem 2.5 in [26] and Theorem 5.2.2 in Chapter 5

F (y)− F (x) = (y − x)
[1
6
f(x) +

2
3
f
(
x+ y

2

)
+

1
6
f(y)

]
for all x, y ∈ R.

INPUT:
PSFE(F (y) − F (x) − (y − x) ∗ (Rational(1/6) ∗ f(x) + Rational(2/3) ∗ f((x + y) ∗
Rational(1/2)) +Rational(1/6) ∗ f(y)))

OUTPUT:
By Sablik Lemma f has degree at most 3
f(x) = a1 + a2x+ a3x

2 + a4x
3

F (x) = a0 + a1x+ 1
2a2x

2 + 1
3a3x

3 + 1
4a4x

4

where a0, a1, a2, a3, a4 are real numbers.
- 0.09 seconds -

Example 7.1.3. In [20] B. Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz, considered the polynomial
functions connected with Hermite-Hadamard inequality in the class of continuous functions(cf.
Theorem 4 in [20], Theorem 2.7 in [26] and Theorem 5.2.4 in Chapter 5)

F (y)− F (x) = (y − x)
[
1
4f(x) + 3

4f
(
1
3x+ 2

3y
)]

for all x, y ∈ R.

INPUT:
PSFE(F (y)−F (x)− (y− x) ∗ (Rational(1/4) ∗ f(x) +Rational(3/4) ∗ f(Rational(1/3) ∗ x+
Rational(2/3) ∗ y)))

OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = a1 + a2x+ a3x

2

F (x) = a0 + a1x+ 1
2a2x

2 + 1
3a3x

3

where a0, a1, a2, a3 are real numbers.
- 0.05 seconds -

Example 7.1.4. J. Aczél [1], J. Aczél and M. Kuczma [2] considered variations of the Lagrange
mean value theorem, which has many applications in mathematical analysis, computational
mathematics, and other fields.

a) see J. Aczél result in [1], Example 2.2 in [26] and Example 5.2.2 in Chapter 5

F (y)−F (x)
y−x = f(x+ y)

for all x, y ∈ R.

INPUT:
PSFE(F (y)− F (x)− ((y − x) ∗ f(x+ y)))
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OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = a1 + a2x
F (x) = a0 + a1x+ a2x

2

where a0, a1, a2 are real numbers.
- 0.02 seconds -

b) see Theorem 5 in [1], Example 2.3 in [26] and Example 5.2.3 in Chapter 5

F (x)−F (y)
x−y = f

(
x+y
2

)
for all x, y ∈ R.

INPUT:
PSFE(F (x)− F (y)− ((x− y) ∗ f((x+ y) ∗Rational(1/2))))

OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = a1 + a2x
F (x) = a0 + a1x+ 1

2a2x
2

where a0, a1, a2 are real numbers.
- 0.03 seconds -

Example 7.1.5. C. Alsina, M. Sablik, and J. Sikorska in [4] considered a functional equation
arising from descriptive geometry, which is still today a rigorous way to deal with graphical
constructions (cf. Example 2.4 in [26] and Example 5.2.4 in Chapter 5).

2F (y)− 2F (x) = (y − x)
[
f
(
x+y
2

)
+ f(x)+f(y)

2

]
for all x, y ∈ R.

INPUT:
PSFE(2∗(F (y)−F (x))−(y−x)∗(f((x+y)∗Rational(1/2))+((f(x)+f(y))∗Rational(1/2))))

OUTPUT:
By Sablik Lemma f has degree at most 3
f(x) = a1 + a2x
F (x) = a0 + a1x+ 1

2a2x
2

where a0, a1, a2 are real numbers.
- 0.09 seconds -

Example 7.1.6. (cf. Example 2 in [25] and Example 3.2.2 in Chapter 3)

F (x)− 4F
(
x+ y

2

)
+ F (y) = xf(y) + yf(x)

for all x, y ∈ R.
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INPUT:
PSFE(F (x)− 4 ∗ F ((x+ y) ∗Rational(1/2)) + F (y)− x ∗ f(y)− y ∗ f(x))

OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = B1(x) + a1
F (x) = −a1x− xB1(x)
where a1 is a real number.
B1(x) is an arbitrary additive function.
- 0.05 seconds -

Example 7.1.7. (cf. Example 3 in [25] and Example 3.2.3 in Chapter 3)

F (x)− 8F
(
x+ y

2

)
+ F (y) = xf(y) + yf(x)

for all x, y ∈ R.

INPUT:
PSFE(F (x)− 8 ∗ F ((x+ y) ∗Rational(1/2)) + F (y)− x ∗ f(y)− y ∗ f(x))

OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = a1 + a3x

2

F (x) = −13a1x−
1
3a3x

3

where a1, a3 are real numbers.
- 0.06 seconds -

Example 7.1.8. Cauchy additive functional equation

F (x+ y) = F (x) + F (y)

for all x, y ∈ R.

INPUT:
PSFE(F (x+ y)− F (x)− F (y))

OUTPUT:
By Sablik Lemma F has degree at most 1
f(x) = 0
F (x) = A1(x)
A1(x) is an arbitrary additive function.
- 0.01 seconds -

Example 7.1.9. Jensen functional equation

F
(
x+ y

2

)
=

1
2

[F (x) + F (y)]

for all x, y ∈ R.

INPUT:
PSFE(F ((x+ y) ∗Rational(1/2))−Rational(1/2) ∗ (F (x) + F (y)))
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OUTPUT:
By Sablik Lemma F has degree at most 1
f(x) = 0
F (x) = a0 + A1(x)
where a0 is a real number.
A1(x) is an arbitrary additive function.
- 0.01 seconds -

Example 7.1.10. Drygas functional equation

F (x+ y) + F (x− y) = 2F (x) + F (y) + F (−y)

for all x, y ∈ R.

INPUT:
PSFE(F (x+ y) + F (x− y)− 2 ∗ F (x)− F (y)− F (−y))

OUTPUT:
By Sablik Lemma F has degree at most 3
f(x) = 0
F (x) = A1(x)
A1(x) is an arbitrary additive function.
- 0.01 seconds -

Example 7.1.11. (cf. Example 3 in [28] and Example 4.4.2 in Chapter 4)

F (x+ y)− F (x)− F (y) = xf(3y) + yf(3x)

for all x, y ∈ R.

INPUT:
PSFE(F (x+ y)− F (x)− F (y)− x ∗ f(3 ∗ y)− y ∗ f(3 ∗ x))

OUTPUT:
By Sablik Lemma f has degree at most 3
f(x) = B1(x) + a3x

2

F (x) = A1(x) + 3xB1(x) + 3a3x3

where a3 is a real number.
A1(x), B1(x) are arbitrary additive functions.
- 0.05 seconds -

Example 7.1.12. (cf. Example 4 in [28] and Example 4.4.3 in Chapter 4)

F (x+ y)− F (x)− F (y) = xf(y)

for all x, y ∈ R.

INPUT:
PSFE(F (x+ y)− F (x)− F (y)− x ∗ f(y))

OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = a2x
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F (x) = A1(x) + 1
2a2x

2

where a2 is a real number.
A1(x) is an arbitrary additive function.
- 0.02 seconds -

Example 7.1.13. (cf. Example 5 in [28] and Example 4.4.4 in Chapter 4)

F (x+ y)− F (x)− F (y) = 3xf(2y)− 4yf(3x)

for all x, y ∈ R.

INPUT:
PSFE(F (x+ y)− F (x)− F (y)− 3 ∗ x ∗ f(2 ∗ y) + 4 ∗ y ∗ f(3 ∗ x))

OUTPUT:
By Sablik Lemma f has degree at most 3
f(x) = a2x
F (x) = A1(x)− 3a2x2

where a2 is a real number.
A1(x) is an arbitrary additive function.
- 0.06 seconds -

Example 7.1.14. (cf. Example 6 in [28] and Example 4.4.5 in Chapter 4)

F (x+ y)− F (x)− F (y) = xf(3y) + yf(3x) + xf(y) + yf(x) + xf(2y) + yf(2x)

for all x, y ∈ R.
INPUT:
PSFE(F (x+y)−F (x)−F (y)−x∗f(3∗y)−y∗f(3∗x)−x∗f(y)−y∗f(x)−y∗f(2∗x)−x∗f(2∗y))

OUTPUT:
By Sablik Lemma f has degree at most 6
f(x) = B1(x) + a3x

2

F (x) = A1(x) + 6xB1(x) + 14
3 a3x

3

where a3 is a real number.
A1(x), B1(x) are arbitrary additive functions.
- 0.09 seconds -

Example 7.1.15. Consider the square-norm-equation in [8] and [7]

F (x+ y) + F (x− y) = 2F (x) + 2F (y)

for all x, y ∈ R.

INPUT:
PSFE(F (x+ y) + F (x− y)− 2 ∗ F (x)− 2 ∗ F (y))

OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = 0
F (x) = A∗2(x)
A∗2(x) is an arbitrary bi-additive function.
- 0.01 seconds -
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Example 7.1.16. Consider the polynomial equation for n = 5 in [8]

F (x+ 6y)− 6F (x+ 5y) + 15F (x+ 4y)− 20F (x+ 3y) + 15F (x+ 2y)− 6F (x+ y) + F (x) = 0

for all x, y ∈ R.

INPUT:
PSFE(F (x+ 6 ∗ y)− 6 ∗ F (x+ 5 ∗ y) + 15 ∗ F (x+ 4 ∗ y)− 20 ∗ F (x+ 3 ∗ y) + 15 ∗ F (x+ 2 ∗
y)− 6 ∗ F (x+ y) + F (x))

OUTPUT:
By Sablik Lemma F has degree at most 5
f(x) = 0
F (x) = a0 + A1(x) + A∗2(x) + A∗3(x) + A∗4(x) + A∗5(x)
where a0 is a real number.
A1(x), A∗2(x), A∗3(x), A∗4(x), A∗5(x) are arbitrary k-additive functions for k ∈ {1, 2, 3, 4, 5} .
- 0.02 seconds -

Example 7.1.17. In [32], P.K Sahoo arrived at the functional equation stemming from trape-
zoidal rule

F (y)− F (x) =
y − x

6

[
f(x) + 2f

(2x+ y

3

)
+ 2f

(
x+ 2y

3

)
+ f(y)

]
for all x, y ∈ R, where F is an antiderivative of f .

INPUT:
PSFE(F (y)−F (x)− (y− x) ∗Rational(1/6) ∗ (f(x) + 2 ∗ f((2 ∗ x+ y) ∗Rational(1/3)) + 2 ∗
f((x+ 2 ∗ y) ∗Rational(1/3)) + f(y)))

OUTPUT:
By Sablik Lemma f has degree at most 5
f(x) = a1 + a2x
F (x) = a0 + a1x+ 1

2a2x
2

where a0, a1, a2 are real numbers.
- 0.02 seconds -

7.2 Conclusions and Future Research

A computer code developed in a python programming language has been presented for obtaining
the polynomial solutions of the functional equation of type (7.0.1). The method’s success can be
attributed to the theoretical results obtained in Chapter 5 (cf. [26]). We note that the functional
equation of type (7.0.1) consists of at most two unknown functions (in particular, at most one
unknown function on either side of (7.0.1)), say F or f , where f is multiplied by a variable x
and/or y. Therefore, we aim to extend the approach to consider a Pexider form of (7.0.1), that
is, an equation with more than two unknown functions. Namely, an equation of the form

n∑
i=1

N∑
p=1

γipFp(aipx+ bipy) =
m∑
j=1

M∑
q=1

(αjqx+ βjqy)fq(cjqx+ djqy), (7.2.1)

(Fp, fq) : R → R, for every x, y ∈ R, γip, αjq, βjq ∈ R, aip, bip, cjq, djq ∈ Q, i ∈ {1, · · · , n}, j ∈
{1, · · · ,m}, n,m,N,M ∈ N and its special forms. Below are examples of special forms of (7.2.1)
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1) Cauchy additive functional equation, pexiderized

F1(x+ y) = F2(x) + F3(y)

for all x, y ∈ R.

2) A generalization of the square-norm-equation in [8]

F1(x+ y) + F2(x− y) = F3(x) + F4(y)

for all x, y ∈ R.

3) The general class of linear functional equations considered in [8] and [7]

n∑
i=1

N∑
p=1

Fp(aipx+ bipy) = 0

for all x, y ∈ R, and aip, bip ∈ Q.

4) P. K. Sahoo and T. Riedel, in [33] (see Chapter 3), considered the functional equations

F1(x)− F1(y) = (x− y) [f1(x+ y) + f2(x) + f2(y)]

xf1(y)− yf1(x) = (x− y) [f2(x+ y) + f3(x) + f3(y)]

for all x, y ∈ R.

5) Equation (7.0.1)

n∑
i=1

γi1F1(ai1x+ bi1y) =
m∑
j=1

(αj1x+ βj1y)f1(cj1x+ dj1y)

for all x, y ∈ R, γi1, αj1, βj1 ∈ R, and ai1, bi1, cj1, dj1 ∈ Q.

Next, we will consider non-polynomial solutions of the functional equation (7.2.1), and finally,
we will study solutions of its inequalities. An example of such functional inequality was consid-
ered in [11], namely,

F1(x+ y)− F1(x)− F1(y) ­ xf1(y) + yf1(x)

for all x, y ∈ R.
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