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ABSTRACT

This Ph.D. thesis is an attempt to apply ML approaches to selected problems of
solid state physics and biophysics. The first part is devoted to phase transitions in
physical models - the problem that has been known and studied from the beginning
of condensed matter and statistical physics. Despite many efforts that have been
put into defining indicators for the classification of phase transitions in numerical
modeling, universal ones valid for all microscopic models do not exist so far. A
similar problem is the precise determination of the critical temperature of a phase
transition. Therefore, it is interesting to check how alternative methods based on
artificial intelligence will perform in this matter. In the second part of the dissertation,
we focus on the possible application of the ML techniques to biosignals describing
ion channels’ activity. The classical methods of kinetic analysis often fail to grasp
the discriminative features of recordings corresponding to different cellular lines and
various stimuli. We investigate if the ML approaches for time series analysis are able to
find such signal’s characteristics from which one can extract an information about the
differences in ion’s conformational dynamics.

Keywords: machine learning, neural network, phase transitions, critical temperature,
first and second–order phase transitions, ion channel, time series analysis
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CHAPTER 1

Introduction

Machine learning (ML) algorithms have been widely applied in various fields of life,
such as medicine, industry, and science, with physics not being an exception. The recent
renaissance of ML methods is driven by enormous progress in developing massively
parallel computing platforms based on supercomputers, multicore GPUs (Graphics Pro-
cessing Unit), dedicated tensor processors, and parallel programming models (CUDA).
Nowadays, a desktop computer equipped with a modern gaming graphics card has
computational power easily exceeding hundreds of TFLOPS (TeraFLOPS), while
the world-top supercomputer Sequoia built by IBM offers 20 petaFLOPS. Such an
availability of high computational power opens great perspectives for condensed matter
physics, where the system’s complexity is the main obstacle to tackling real problems.
ML methods are of special interest here since they constitute a qualitatively new
approach to solid state and statistical physics. In contrast to conventional approaches to
microscopic physical models, such as Monte Carlo simulations, ML methods use only
a fraction of information about the system, usually snapshots of lattice configurations.
For example, in the famous Falicov-Kimball model describing the interaction of
itinerant electrons with localized adatoms, the snapshots correspond to the configuration
of adatoms on the lattice. Electrons are completely neglected here.

This Ph.D. thesis is an attempt to apply ML approaches to selected problems of
solid state physics and biophysics. The first part is devoted to phase transitions in
physical models - a problem that has been known and studied from the beginning of
condensed matter and statistical physics. Despite many efforts that have been made to
define indicators for the classification of phase transitions in numerical modeling, so far
a universal one valid for all microscopic models does not exist. A similar problem is
the precise determination of the critical temperature of a phase transition. Therefore,
it is interesting to check how alternative methods based on artificial intelligence will
perform in this matter. In the second part of the dissertation, we focus on the possible
application of ML techniques to biosignals describing ion channels’ activity. Classical
methods of kinetic analysis often fail to grasp the discriminative features of recordings
corresponding to different cellular lines and various stimuli. We investigate if the
ML approaches for time series analysis are able to find such signal’s characteristics
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from which one can extract information about the differences in ion’s conformational
dynamics.

The dissertation is organized as follows. In Chapter 2, we introduce basic notions
associated with the physics of phase transitions. The next Chapter 3 describes primary
machine learning methods and their applications to some problems of condensed matter
physics. Chapter 4 is divided into four sections summarizing the results of the studies
conducted as part of this thesis. In Sec. 4.1, we show that the ML methods, based
solely on the MC configurations and without any additional knowledge about the
underlying physical model, can determine the critical temperature of the topological
phase transition. However, we find that the accuracy of this prediction depends
on the character of the microscopic model (quantum or classical) and the choice
of configurations to be trained. Nevertheless, it is demonstrated that in all studied
cases, the algorithm does not trivially learn the order parameter, but probably some
more complicated local features of the configurations related to the proliferation of
vortices and antivortices in the vicinity of this transition. In Sec. 4.2, we show how
some simple unsupervised learning methods can identify the order parameter and hint
at the nature of undergoing phase transitions. Some limitations of these algorithms
and their interpretation are also discussed. Sec. 4.3 describes the applicability of
the learning by confusion (LBC) scheme, a method based on the neural network, in
accurate identification of the phase transition nature in the case of the Falicov–Kimball
(FK) model for which the classical methods fail. As a result of the application of the
LBC scheme, we obtain the characteristic performance curve. We discover that the
character of this curve differs qualitatively between two kinds of phase transition, which
in the FK model is driven by the value of the potential U . We show that the resulting
discrepancies could be associated with the characteristic growth of defects (deviations
from the fully–ordered state) occurring in this model. We prove that this phenomenon
does not disappear with an increase in lattice size, which suggests that it is the result of
interesting physics hidden in the FK model and not a finite–size effect. The remaining
part of this chapter concentrates on applying various ML methods to the experimental
data that illustrate the activity of ion channels (Sec. 4.4). In this Section, we reveal that
it is not always possible to discriminate between BK channel recordings obtained at the
same membrane potential but corresponding to different cell lines using classical kinetic
analysis methods. However, we find that it is feasible to grasp these disparities using
machine learning algorithms. In another study, we discover that some novel data mining
algorithms can find qualitative differences in the activation of BK channels treated with
various modulators. The last Chapter 5 briefly summarizes the scientific achievements
described in previous chapters.

2
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CHAPTER 2

The physics of phase transitions – theoretical preliminaries

2.1 States of matter

Every substance can take one of its forms called phases. Water, for example, can
be a solid (ice), liquid, or gas, depending on pressure and temperature. Within one
phase, matter can also exhibit immense complexity. For example, ice has 17 different
polymorphs, and numerical simulations predict even more. The richness of the water
phase diagram is presented in Fig. 2.1.

Fig. 2.1 The phase diagram of water including liquid phase (red), hydrogen–disordered (orange),
hydrogen–ordered (blue) and polymeric states (green) of ice [1]. Stable and metastable states
are denoted by large and small Roman numerals, respectively. The solid and dotted black
lines indicate the phase boundaries, where dotted line means that the phase boundary was
extrapolated. Dashed lines indicate the metastable melting lines of ices IV and XII.

Different states of matter exhibit various thermal, optical, and electronic properties.
They are reflected in the values of measurable quantities such as density, heat capacity,
magnetic moments, etc. Generally, a substance can pass from one state to another
under the influence of some external parameter (magnetic or electric field, temperature,
pressure). Such physical processes are known in the literature as phase transitions. In
the experiment, these phenomena are identified with a drastic change in some physical
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observables and, in some cases, with the release of the latent heat at the critical point.
Phase transitions occur in a wide variety of physical systems. They are associated with
a sudden jump of some physical quantity. In the case of above–mentioned water, it is
signaled by an instantaneous change in density value. Another typical example is the
ferromagnet–paramagnet transition, which involves an abrupt drop in magnetization.
Similarly, the conductor–superconductor phase transition is characterized by a rapid
decrease in resistance.

The physics of phase transitions can be understood at the macroscopic level in
terms of thermodynamics and statistical physics. We now briefly recall the most
important concepts of these two branches of physics, which are essential to understand
the remaining part of the thesis. Let us consider a magnetic system undergoing a phase
transition governed by the first law of thermodynamics:

dU = TdS −MdH,

where U is the internal energy of the system, T stands for temperature, S is the entropy,
M is the magnetic moment, and H denotes the value of an external magnetic field.

One of the most fundamental quantities in statistical physics is the canonical
partition function Z(T,H):

Z(T,H) =
∑
r

e−βEr(H), (2.1)

where sum goes over all possible states, β = 1
kBT

and kB is the Boltzmann constant.
Knowing Z(T,H), one can derive all information about the system, including the free
energy F(T,H):

F(T,H) = −kBT logZ(H,T ), (2.2)

which is necessary to find the values of thermodynamic quantities changing during a
phase transition, such as entropy, magnetic susceptibility, or heat capacity (as presented
in Fig. 2.2). Note that even though the introduced formalism is written in the magnetic
language (so are the other physical quantities), it can be easily generalized for other
systems, not only those involving magnetic interactions.

The thermodynamic quantities presented in Fig. 2.2 allow one to tackle the physics
of phase transition solely on the macroscopic level. However, a microscopic description
is also needed to gain a more profound understanding of the phenomenon. For this
reason, it is useful to define a physical observable that can continuously trace changes
in microscopic degrees of freedom upon a phase transition. The correlation function C
is one of such quantities. In general, C measures the relationship between two random
variables. Let us suppose that we are dealing with some physical quantity q(x) that

4
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Partition function

Free energy

Internal Energy Entropy Magnetization

Specific Heat (H=const) Specific Heat (H, M=const) Isothermal susceptibility

Fig. 2.2 The fundamental thermodynamic variables derived from the canonical partition function
Z for a magnetic system governed by the first law of thermodynamics: dU = TdS −MdH .

can take different values depending on the position x. The correlation C(q(x1), q(x2))

between q(x1) and q(x2) is defined as:

C(q(x1), q(x2)) = 〈q(x1)q(x2)〉. (2.3)

In a similar manner, we can measure the correlation between spins si and sj placed on
a discrete lattice:

C(i, j) = C(r) = 〈sisj〉 − 〈s〉2, (2.4)

where 〈.〉 denotes the mean value and r stands for the distance between spins si and sj
that occupy lattice sites i and j, respectively.

The value C is not constant and changes under the influence of an external
parameter. Below and above the critical point, it takes the following form [7]:

C(i, j) = r−τ exp−r/ξ, (2.5)
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where r = |i−j|, ξ stands for the correlation length and τ denotes some constant. Such
a form of C indicates that correlations decay exponentially with the distance between
spins and vanish for sufficiently large r. In the vicinity of a phase transition, when the
long–range order starts to develop in a system, ξ becomes infinite, and Eq. (2.5) can no
longer describe correlations. The experiments suggest that, in this case, the correlation
function decays according to the power law:

C(i, j) ∼ 1

rd−2+η
, (2.6)

where d stands for the dimension of the system and η is a constant called the critical
exponent.

It is possible to relate the microscopic correlation function with the macroscopic
magnetic susceptibility χ defined in Fig. 2.2. A straightforward calculation yields:

χ =
1

kT

(
〈M2〉 − 〈M〉2

)
=

1

kT
〈
(
M − 〈M〉

)2〉. (2.7)

On the other hand:

〈
(
M −〈M〉

)2〉 =
∑
i

(
si−〈si〉

)∑
j

(
sj−〈sj〉

)
=
∑
ij

C(i, j) = N
∑
i

C(i, 0), (2.8)

which implies that:

χ =
N

kT

∑
i

C(i, 0). (2.9)

In the last step of evaluating Eq. (2.8), we assumed translational invariance (〈si〉 =

〈sj〉), which is well justified for homogeneous systems. Eq. (2.8) implies that the
influence of the phase transition on the microscopic correlation function C is also
reflected in macroscopic magnetic susceptibility χ. In particular, the divergence of
C observed at the critical point makes χ also infinite.

2.2 First and second–order phase transitions

As can be inferred from the previous Section, the phenomenon of phase transition
is associated with the divergence of a physical observable. In some cases, the
discontinuity appears in quantities being the first–derivatives of free energy, such as
internal energy, entropy, or magnetization (Fig. 2.2 and Fig. 2.3ab). In other cases,
these physical observables pass smoothly through the critical point – a non–analytical
behavior is exhibited in the second–order derivatives of free energy (Fig. 2.3cd). Based
on the order of the smallest derivative divergent at the critical point, Ehrenfest called
these two kinds of phase transitions, first and second–order phase transitions.

Nowadays, scientists often abandon the Ehrenfest classification in favor of the
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Fig. 2.3 The behavior of some thermodynamic observables around the transition point for the
first–order phase transition (a),b)), second–order phase transitions (c), d)).

modern division of the phase transitions, which divides them into two types:

1. Discontinuous phase transitions (first–order phase transitions according to
Ehrenfest) involving a release of latent heat at the transition point QL = TC∆S,

2. Continuous phase transitions (second–order phase transitions according to
Ehrenfest) not accompanied by latent heat.

With regard to the fact that both classifications are still in use in the literature,
we will use the terms first–order and discontinuous, second–order and continuous

interchangeably throughout this thesis.
As highlighted in the previous Section, phase transitions manifest themselves in

infinite values of the correlation length, divergent susceptibility (heat capacity), and
the power–law decay of the correlation function at the transition. Such a description
is accurate only in the case of second–order (continuous) phase transitions. During a
discontinuous phase transition, we observe the divergence in the first derivatives of free
energy. It implies that entropy S defined as S = −

(
∂F
∂T

)
H

exhibits a discontinuous jump
at the critical point that leads to the release or absorption of latent heat QL = TC∆S.

A characteristic feature of discontinuous phase transitions is phase coexistence,
when the two phases, low and high temperature, for example, exist simultaneously.
This phenomenon can be easily visualized in the example of liquid–gas transition (see
Fig. 2.4). Before a liquid turns into gas, it passes through an intermediate state where
both phases coexist. The proportion of these two states of matter changes linearly with
an increase in volume from value V1 where the substance takes the form of liquid to
value V2 where it changes entirely into gas. The phenomenon of phase coexistence,
along with the appearance of the latent heat, are regarded as hallmarks of the first–
order phase transitions. In contrast to the second–order phase transitions, the correlation
length at this transition is generally finite.

It is important to note that a slightly different approach to phase transitions and
their classification was proposed in 1937 by Landau, who associated phase transitions
with the symmetry of a system. He found that the disordered phase exhibits a symmetry
that is (at least partially) lost during a transition to the low–temperature phase. Let us

7

36:5230437501



Liquid Transition region Gas

only
liquid gas

gas-liquid
mixture

only

Fig. 2.4 Example of the phase diagram (pressure p vs. volume V dependence) of the liquid–gas
first–order phase transition. Below V1 and above V2, only one phase exists, either liquid or gas.
For values of volume V lying in the range V1 < V < V2, a substance takes the form of a mixture
of coexisting phases. Its proportion changes linearly with an increase of V .

illustrate this with the example of the Ising model. Above the critical temperature, the
spins point equally in both directions, and magnetization is zero. In this state, the system
is invariant under transformation si → −si, and we can say that it is characterized by
the Z2 symmetry. Below the critical point, all spins are aligned in one of two possible
directions of magnetization, which leads to the spontaneous breaking of symmetry
present in the high–temperature phase.

2.3 The order parameter

In the study of phase transitions, it is useful to introduce a variable that drastically
changes its behavior at the critical point. We call it the order parameter. It takes
a non–zero in the low–temperature (ordered) state and drops smoothly to zero at a
transition point, where the order is completely lost. There is no general definition of
the order parameter. Its choice is not unique and usually dictated by its utility [8].
Some propositions of the order parameter for various classical and quantum systems
are listed in Tab. 2.1.

The order parameter φ can also be useful in characterizing the nature of phase
transitions. We observe a noticeable difference in the behavior of φ during first– and
second–order phase transitions, as illustrated in Fig. 2.5. While in the case of second–
order phase transitions, the order parameter drops smoothly to zero at the critical point,
in the case of first–order phase transitions, one observes its discontinuous jump.

It is also possible to create an alternative classification of phase transitions. One
of them is associated with the notion of the order parameter and symmetry of the
system [9]. It divides phase transitions into two types:

1. transitions with no order parameter – the symmetry groups of two phases are not
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The physical system The order parameter The form n

Ferromagnet Magnetization ~M vector 3

Ferroelectric Polarization P scalar 1

Liquid density difference ρ− ρC scalar 1

Superfluid 4He Wave function of the ground state Ψ0 complex scalar 2

Superconductor Cooper pair wave function Ψ complex scalar 2

The Ising model magnetization m scalar 1

Table 2.1 Examples of the order parameters for various physical systems. Symbol n denotes
the dimensionality of the presented order parameters.

First-order phase transition Second-order phase transition

Fig. 2.5 The illustration of different behavior of the order parameter φ during first
(discontinuous) and second–order (continuous) phase transition in the function of temperature.

included in one another (they are always first–order according to the Ehrenfest
classification),

2. transitions with order parameter – the symmetry group of the low–temperature
phase is included in the symmetry group of the high–temperature phase. It can be
continuous or discontinuous depending on the behavior of the order parameter at
the transition point (see Fig. 2.5).

2.4 Critical exponents and universality classes

As emphasized in the previous Sections, phase transitions are accompanied by
divergences in physical quantities. It is instructive to understand the character of
emerging singularities. For this purpose, we usually introduce a set of constants called
critical exponents, which describe the behavior of various thermodynamic quantities at
the transition point.
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For a thermodynamic function F the critical exponent λ is defined as:

λ = lim
t→∞

ln |F (t)|
ln |t| , (2.10)

where the reduced temperature t:

t =
T − TC
TC

(2.11)

is a measure of the deviation of a given temperature T from its critical value TC . In
practise, it is more common to use a slightly modified version of Eq. (2.10):

F (t) ∼ |t|λ (2.12)

for t→ 0.
The form of the critical behavior of several thermodynamic quantities

characterizing magnetic systems defined in terms of critical exponents is presented in
Tab. 2.2. They are not independent of each other – and many inequalities illustrate

Observable Critical exponent

Specific heat C C ∼ |t|−α

Magnetization M M ∼ (−t)−β

Isothermal susceptibility χ ξ ∼ |t|−γ

Critical isotherm at TC H ∼ |M |δsgn(M)

Correlation length ξ ξ ∼ |t|−ν

Correlation function C(r) at TC C(r) ∼ 1/(rd−2+η)

Table 2.2 The critical behavior of the various physical quantities in dependence on the reduced
temperature t. The table is adopted from [7].

relationships between them. They arise from the dependencies existing between
thermodynamic variables and mathematical assumptions that explain their behavior.
For instance, the easiest to prove is the Rushbrooke inequality [10]:

α + 2β + γ ≥ 2. (2.13)

It results from the relation between magnetic susceptibility χ and specific heats CH ,
CH,M (Fig. 2.2) and the assumption that χ ≥ 0. The other one, known as Griffiths
inequality [11]:

α + β(1 + δ) ≥ 2 (2.14)
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is a consequence of the convexity of the free energy.

The critical exponents λ’s are interesting with regard to their universality. While
the critical temperature TC strictly depends on the physical model, which may involve
different interactions (as we shall see in the forthcoming Section), the λ’s are common
to many systems. Their values depend solely on the dimension d of the system and
the symmetry of the order parameter [7]. Systems described by the identical values
of critical exponents fall into the same universality class. It implies that the critical
behavior of complicated models can be derived from the simpler ones as far as they are
assigned to identical universality classes.

2.5 Phase transitions in various spin models

The preceding Sections focus on the general description of the formalism used in
the physics of phase transitions without specifying any particular system. Here, we
fill this gap by introducing microscopic models describing systems undergoing phase
transitions. We start with the Ising model, the simplest model of ferromagnetism we
study here. Other models of magnetism we discuss are more complex but can be
reduced to the Ising model in some exceptional cases.

The Ising Model

The Ising model is a simplified mathematical model of ferromagnetism [12]. It
describes a collection of classical magnetic moments (”spins”) localized on the d–
dimensional lattice, which can point in one of two possible directions: either up or
down (si = ±1). The model is described by the following Hamiltonian:

H = −J
∑
〈i,j〉

sisj − h
N∑
i=1

si. (2.15)

The first term in Eq. (2.15) is responsible for the interaction between spins. It has the
short–range character: the interaction takes place only between neighboring spins i, j
(which is denoted by 〈i, j〉). The constant J is called the exchange energy. It affects
the character of underlying interaction: its positive and negative value favors parallel or
antiparallel alignment of spins, respectively. The second term in Eq. (2.15) is optional
and describes the interaction of N spins with an external magnetic field h.

This remarkably successful spin interaction model is instrumental in studying
phase transitions – it has been demonstrated that for d > 1, the model undergoes a
second–order phase transition. In further considerations, let us assume that we are
dealing with a 2–dimensional Ising system in the absence of an external magnetic
field h = 0. Then the system, at a critical temperature TC (called the Curie point),
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passes from a paramagnetic state, in which the directions of spins are random (equal
number of spins point up and down), to a ferromagnetic one, which is characterized by
parallel alignment of spins (all spins point either up or down). This phase transition is
associated with a loss of symmetry. While the high–temperature state is invariant under
transformation si → −si, the low–temperature state is not. It implies that the ground
state exhibits lower symmetry than the state representing the system at the temperature
T > TC . As can be inferred from the classification of phase transitions presented
in Sec. 2.3, the symmetry of a system can be associated with the notion of the order
parameter φ. The most obvious choice of φ, in this case, is magnetization M , which is
defined as:

M = 〈s〉 =
1

N

∑
i

si, (2.16)

where N is the number of lattice sites. The analytical formula for the temperature
dependence of magnetization M(T ) can be derived from the exact analytical solution
to the Ising model found by Onsager in 1944 [13]. We plot it in Fig. 2.6. The form
of this function is similar to the one presented in Fig. 2.5: the order parameter drops
smoothly and reaches zero in T = TC = 2.269 J/kB (as predicted by the analytical
solution), which confirms the continuous character of phase transition.

0.0 0.5 1.0 1.5 2.0
T/TC

0.0

0.2

0.4

0.6

0.8

1.0

M

Fig. 2.6 Magnetization M in the function of temperature presented for two-dimensional Ising
Model.

The studies of critical phenomena in the Ising model initiated by Onsager were
later extended by other researchers [14, 15]. They revealed the exact values of critical
exponents defined in Sec.2.4 which when h = 0 are the following: α = 0, β = 1/8,
γ = 7/14, δ = 15, ν = 1, η = 1/4. It is easy to verify that they indeed obey
the Rushbrooke and Griffiths inequalities

(
Eq. (2.13), Eq. (2.14)

)
which, in this case,

hold as equalities. The universality of the critical exponents makes them general for
all models constructed on planar lattices with short–range interactions (only between
nearest neighbors).

It is important to emphasize that although the Ising model was introduced to study
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ferromagnetism, it can be applied to the vast number of interacting two–state systems.
For instance, it can successfully describe the phase transition occurring in brass (a
binary alloy of copper and zinc) in which the lattice site is either occupied by an atom
of copper or zinc. Similarly, the Ising Hamiltonian (Eq. (2.15)) can model the lattice
gas system in which an atom can occupy a lattice site or not.

The Potts Model

The 2–dimensional Potts model is a generalization of the Ising model for more than two
spin components [16]. The q–component version of this model describes an interaction
of spins, each pointing in one of the q equally spaced directions θn:

θn =
2πn

q
, n = 0, 1, . . . , q − 1. (2.17)

The Hamiltonian of this model is given by:

H = −J
∑
〈i,j〉

δsi,sj , (2.18)

where si = 0, . . . , q − 1 represents the spin direction θi defined in Eq. (2.17) and 〈i, j〉
stands for the nearest neighbor sites. It is easy to notice that for q = 2, the Potts model
describes the Ising system. It must thus undergo a continuous phase transition. The
calculations based on the graph theory reveal the same character of phase transition
also for the 3– state and 4– state Potts models. According to the same theory, for q > 4

the phase transition has discontinuous character [17].

The Blume–Capel Model

The Blume–Capel Model can be viewed as a generalization of the Ising model for spin
S = 1 in which the external magnetic field is replaced by the anisotropy fieldD [18, 19].
The following Hamiltonian defines the model:

H = −J
∑
〈i,j〉

sisj +D
∑
i

s2
i , (2.19)

where 〈i, j〉 indicates that summation is made over all pairs of nearest–neighbor spins.
The Hamiltonian is composed of two terms: the first indicates the usual spin–spin
interaction, while the second describes the single–spin interaction with the anisotropy
field D. The model is characterized by the phase diagram exhibiting the tricritical
point (TPC) separating the first– and second–order phase transitions [20, 21]. Its sketch
is shown in Fig. 2.7. Monte Carlo simulations predict the values for the TPC in the
thermodynamic limit at kBTC/J = 0.609(4) and DC/J = 1.965(5) [22].
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   First-order 

Second-order 

Fig. 2.7 A sketch of a phase diagram of the Blume–Capel model. The character of the phase
transition changes at the critical point (DC , TC) ≈ (1.965, 0.609) for J = 1.

The classical XY Model

The classical XY model can be regarded as a generalization of the Ising model for spins
pointing in any direction. Within the 2–dimensional version of this model, a spin placed
on the lattice site i is described by the classical unit length vector: si = (cos θi, sin θi).
Similarly to the Ising model, it involves only nearest–neighbor interactions, and in the
absence of an external magnetic field, it is described by the following Hamiltonian:

HXY = −J
∑
〈i,j〉

cos(θi − θj), (2.20)

where J stands for the coupling constant and 〈i, j〉 denotes that the interaction takes
place only between spins placed on the neighboring sites i and j. As can be inferred
from Eq. (2.20) energy of the system does not change under the influence of the
global rotation of spins. Therefore, the Hamiltonian of the model exhibits continuous
rotational symmetryO(2). Mermin and Wagner have rigorously proved that continuous
symmetries cannot be spontaneously broken at any finite temperature in 2–dimensional
systems with short–range interactions [23]. This theorem excludes the possibility of
a ferromagnetic phase and, as a consequence, an Ising–type phase transition. Yet, the
XY–model does exhibit a peculiar phase transition not accompanied by the spontaneous
symmetry breaking. Therefore, it can not be classified within the theories of phase
transition presented in the previous Sections. Kosterlitz and Thouless found that it is
signaled by a subtle change in the functional form of the correlation function between
spins [24, 25, 26]. Above the critical temperature TBKT , the correlation function obeys
a normal, exponential behavior (see Eq. (2.5)):

〈SiSj〉 ∼ e−r/ξ, (2.21)
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where r is the distance between the spins placed on the lattice sites i and j and ξ denotes
the correlation length. On the contrary, for temperatures T < TBKT , it takes the unusual
algebraic form:

〈SiSj〉 ∼ r−η, (2.22)

where η is the exponent proportional to the temperature: η = T/(2πJ) [27]. This
specific form of 〈SiSj〉 occurring for T < TBKT leads to the development of the
so–called quasi long–range order (QLRO) in the system. Kosterlitz found [26]
that the change in the correlation function can be associated with the appearance of
topological defects in a system called vortices and antivortices. They are defined as
points in configurations around which the spins complete the revolution on 2π or −2π,
respectively. Examples of these topological excitations are depicted in Fig. 2.8. In the
temperature range dominated by QLRO (T < TBKT ), the vortex–antivortex pairs are
bound together. At the critical temperature TBKT , the QLRO is destroyed, resulting
in unbinding the vortex–antivortex pairs. Their number proliferates with an increase
in temperature. Simultaneously, the average distance between already existing pairs
grows in a logarithmic manner [24, 25, 26]. Such evolution of the vortex–antivortex
pairs concentration as a function of temperature is depicted in Fig. 2.9.

vortexantivortex

Fig. 2.8 An example of vortex and antivortex pair formation in a spin configuration. The vortex
and antivortex correspond to the spins change by 2π and−2π for a path that encloses their cores
(marked by blue and red dots), respectively.

As discussed above, the Berezinskii–Kosterlitz–Thouless (BKT) phase transition
differs significantly from the ’classical’ first– and second–order transitions. It is not
accompanied by spontaneous symmetry breaking and possesses no order parameter.
Therefore, it is sometimes called infinite order phase transition. The theory of BKT
phase transition has numerous applications in studies related to liquid helium, liquid
crystals, and superconductors.

The quantum XY Model

The quantum XY model is a mathematical model that extends the classical XY model
to describe the behavior of quantum spins on a two-dimensional lattice. Its Hamiltonian
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Fig. 2.9 An illustration of the vortex–antivortex pairs formation in the MC configurations of
2–dimensional classical XY model (lattice size L = 16) for different temperatures lying below
and above the critical temperature (TBKT ≈ 1.0/J). Blue and red dots mark the positions of
vortices and antivortices, respectively.

is given by:

Hq−XY =
EC
2

∑
i

n̂2
i − J

∑
〈i,j〉

cos(θ̂i − θ̂j), (2.23)

where n̂i is the number operator and EC is the charging energy. It can be physically
realized as a periodic array of ultra-small Josephson junctions [28, 29]. Then the
operator n̂i appearing in the first term of the Hamiltonian (Eq. 2.23) measures the
number of Cooper pairs transferred between grains and EC is regarded as the energy
needed to induce a charge of one electron on the junction with capacitance C.
The second term can be considered as the Josephson coupling energy between two
consecutive grains described by the quantum mechanical wave function ψi = |ψi|e−iθi .
The competition between these energy terms results in the BKT phase transition
between the normal and superconducting state.

Phase–fermion model

The phase–fermion model (PF) [30] describes fermions coupled locally to fluctuating
classical phases. It is given by the Hamiltonian:

HPF = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + g
∑
i

(
eiθi ĉ†i↑ĉi↓ + h.c.

)
, (2.24)

where c†iσ, ciσ stand for the creation and annihilation operators of an electron with spin σ
placed at the lattice site i, t is the hopping integral, and g denotes the coupling constant
between the electron and phase. The model can be regarded as an approximation of the
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boson–fermion model [31] described by the Hamiltonian:

HBF = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + ĝ

(∑
i

b†i ĉi↑ĉj↓ +H.c.

)
− µ(2n̂b + n̂f ) + EBn̂B, (2.25)

in which µ is the chemical potential, n̂B(n̂F ) is the density operator for bosons
(fermions) and EB corresponds to the bosonic level. In the limit of a large number
of bosons per lattice site, fluctuations in their number are negligible. We can then use
the approximation b̂i =

√
nBi e

iθi which makes bosons classical, localized particles
described by the phase θi. Furthermore, assuming that EB = 2µ (resulting in the
lack of the effective bosonic chemical potential) and by replacing the constant ĝ with
g = ĝ

√
nB we obtain the Hamiltonian introduced in Eq. (2.24).

In general, the model describes a system of fermions hopping between different
lattice sites and scattering off of the classical phases. It leads to the development of the
indirect, mediated by mobile fermions long–range–temperature–dependent interaction
between bosonic phases. This phenomenon is, in turn, responsible for the occurrence
of temperature–driven BCS–BEC and BKT phase transitions.

The model can describe a vast number of realistic physical systems. One of many
examples includes an array of superconducting islands placed on top of a graphene
sheet [32]. In such a case, the islands are modeled by fluctuating classical phases,
while Cooper pairs mediate the interaction between the islands by tunneling from one
to another. Surprisingly, the interaction between the islands survives even if the distance
between the islands is larger than the range of the superconducting proximity effect.

The Falicov–Kimball Model

The Falicov–Kimball Model [33] (FK) was introduced in 1969 to explain the
metal–insulator phase transition occurring in rare–earth materials and transition–metal
compounds [34]. It can be regarded as a limiting case of the generalized Hubbard model
[35] described by the Hamiltonian:

H = −
∑
ijσ

tijσc
†
iσcjσ + U

∑
i

ni↑ni↓, (2.26)

where ciσ , c
†
iσ stand for the annihilation and creation operators of an electron with spin

σ at the lattice site i, tijσ is the hopping–integral, U denotes the strength of an on–site
Coulomb interaction and ni is the occupation number operator for spin σ at a site i.

The simplification in the FK model assumes that one type of electrons, for instance,
’spin–down’, are heavy localized particles, while ’spin–down’ electrons are light,
itinerant ones. This assumption simplifies the Hubbard Hamiltonian to the form called
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the spinless FK model:

HFKM = −t
∑
<i, j>

c†icj + U
∑
i

niwi +H.c., (2.27)

where t is spin–independent hopping integral, symbol 〈i, j〉 denotes that the hopping
takes place only between nearest neighbor sites and the parameter wi ∈ {0, 1} indicates
whether the site i is occupied by a heavy electron (wi = 1) or not (wi = 0).

Perhaps the most straightforward interpretation of the model is when one refers
to the localized particles as heavy, classical ions that interact electrostatically with the
itinerant electrons. It is the only direct interaction that occurs in the lattice system –
the ions interact among themselves only effectively. This effective interaction of ions
makes the system’s energy state dependent on their distribution.

Fig. 2.10 Two ground states of the Falicov–Kimball Model. Black and white squares denote the
lattice sites occupied by ions and free of them, respectively.

In particular, it was shown by Kennedy and Lieb [36, 37] that for every bipartite
lattice, the half–filled FK model (when the lattice is equally filled with light and heavy
particles) exhibits long–range order at low temperatures. The ordered state is the
famous checkerboard state (Fig. 2.10), which also turns out to be the system’s ground
state.

Although the FK model is much simpler than the Hubbard model (Eq. (2.26)),
rigorous analytic solutions of the former are known only for one (d = 1) [38, 39],
and infinite dimension (d = ∞) versions of the model [38, 40]. Hence, we need
numerical methods to obtain some information about the model in other cases. The
results obtained from Monte Carlo simulations suggest that the half–filled FK model
undergoes the first–order phase transition for U ≤ 1 and the second–order phase
transition for U > 1 [41], as sketched in the phase diagram shown in Fig. 2.11.

It is important to emphasize that the critical interaction U∗ ≈ 1.0 separating
between two kinds of phase transition is affected by a significant error. It comes from
the fact that it is estimated with the Gaussian method [42] only for one system size
(20 × 20) [41]. To obtain more accurate predictions, we should include the results for
much larger systems, which are hard to simulate (the calculations are computationally
expensive).
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SOdisordered state

checkerboard state

1

Fig. 2.11 A sketch of the phase diagram of the half–filled FK model. The nature of a phase
transition changes approximately at the point (UC , TC) = (1.0, 0.595) (t = 1).

2.6 Summary

In this Chapter, we introduced basic concepts of thermodynamics and statistical physics
associated with the very rich and complicated theory of phase transition and critical
phenomena. We also introduced a few microscopic models’ Hamiltonians of systems
undergoing different types of phase transitions. They will be more carefully analyzed
in the forthcoming Sections of this thesis with new tools based on machine learning
algorithms.
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CHAPTER 3

Basic concepts of machine learning and its application to problems
of condensed matter physics

Nowadays, machine learning methods are widely used in many science areas, with
physics no exception. Due to their enormous capacity to deal with high–dimensional
data, they are also ideally suited for solving problems of condensed matter physics.
Thus, ML methods have the potential to become a new tool in the physicists’ box
alongside standard techniques such as calculus or Fourier transform [2].

Fig. 3.1 Figure taken from [2] presenting the machine learning methods as a new tools in the
box of physicist.

According to Ref. [3], there exist four major areas of condensed matter physics
that overlap with ML methods:

• Hard Condensed Matter – research area involving studies of critical
phenomena, phase transitions (including topological ones), and improvement of
classical simulation methods,

• Soft Condensed Matter – research area which studies materials prone to the
application of external forces. The ML algorithms are applied here to detect
phase transitions or topological defects given their configurations,

• Materials Modeling – research area with focus on the enhancement (with the
ML methods) of the Molecular Dynamics (MD) simulations, Density Functional
Theory (DFT) computations, atomistic feature engineering, reconstruction of the
potential energy surface (PES) of the materials,
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• Physics–inspired Machine Learning Theory – research area where theoretical
physics frameworks give new insight into explaining the mechanism behind the
DL models.

CMP + ML

Hard Matter

Phase transitions & 
Critical parameters

Classical and
Modern ML
Approaches

Analysis

Materials
Modelling

Machine-learned  
potential

Atomistic Feature 
Engineering

Soft Matter

Colloidal systems
Engineering setups

Structural and dynamical
properties

Phase transitions

Enhanced
Simulation
Methods

Machine-learned  
Free Energy

Surfaces

Enhanced
Simulation 
Methods

Physics-Inspired 
Machine Learning 

Explanation of Deep
Learning Theory Structural and dynamical

properties

Engineering setupsRestricted
Boltzmann Machine

Fig. 3.2 The schematic overview of the possible application of the ML to the problems of the
condensed matter physics [3]. CMP is the abbreviation for Condensed Matter Physics.

Regarding the character of this thesis, we will be more specific only on the Hard
Condensed Matter Applications.

3.1 Basic ML classification methods

The machine learning methods can be divided into three main categories [43]:

• supervised learning,

• unsupervised learning,

• feature extraction.

The goal of supervised learning is to find a function f that maps an input data x,
usually exhibiting some pattern, to the label y, i.e. y = f(x). The main task of an ML
algorithm is to fit x to y by minimizing the error between actual labels y and predicted
ones ŷ. The loss (error) functions can take various forms (cross-entropy, mean squared
error, Kullback–Leibler loss function) and may differ among applied methods.

In contrast to supervised learning, labels are not provided in the unsupervised
learning scheme. In this case, the algorithm looks for patterns in the input data and
tries to group them into clusters.

The feature extraction methods mainly aim at reducing the dimensionality and
selecting the most representative features of the data. The algorithms in this category
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are instrumental in cases where our data are high–dimensional and highly correlated. It
is usually used in the preprocessing stage, just before feeding the data into a ”proper”
supervised or unsupervised task.

As for the applications of these methods to condensed matter physics, most studies
focus on investigating the Ising model [44] since it can be treated as a paradigm to solve
more complicated problems. The reason for this choice is obvious: it is the simplest
model of ferromagnetism that predicts a phase transition in dimension d > 1.

3.2 Linear Regression

Linear regression is a simple technique borrowed by machine learning from statistics,
with the aim of fitting input data x to a known output y with a linear function. Therefore,
it belongs to the class of supervised learning algorithms. The main task of the algorithm
is to minimize the mean squared error function LMSE:

LMSE =
1

N

N∑
i=1

(ŷi − yi)2 , (3.1)

where N is the number of samples, yi denotes the label of the sample i and

ŷi =
N∑
i=1

wixi + wo (3.2)

is the prediction provided by the algorithm. The weights wi and the bias wo are fitted
during the training process in such a way as to minimize LMSE .

In the field of condensed matter physics, one can use this extremely straightforward
method to speed up Monte Carlo (MC) computations. MC methods are considered one
of the main computational approaches [45, 46], used with systems characterized by
many degrees of freedom. They can be applied to extract samples of configurations
(states) in both classical and quantum many–body systems. Their realization is based
on the Metropolis algorithm, which proposes a new state according to some probability
distribution. This proposition can be realized either locally or globally. The local update
method involves a change only in one lattice site. In contrast, the global update modifies
a large number of spins at once. If a new configuration is accepted, it is treated as a
new state in the Markov chain. Otherwise, we start from the previous state again and
repeat the whole procedure with the new update. The main drawback of the local update
method is the long autocorrelation time τ occurring in the vicinity of the phase transition
(the phenomenon dubbed the critical slowing down). The global update methods such
as Wollf [47], Swenden-Wang [48] or ”worm” [49] significantly reduce this problem.
They are, however, designed only for specific models – it is extremely difficult to create
a generic global update method. In order to overcome these issues, some techniques
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Fig. 3.3 Four steps that make up the SLMC scheme. Step (i) involves the simulation of a
system with the local update method. In step (ii), generated MC configurations are fed into a
machine learning algorithm that learns an effective Hamiltonian Heff with the known global
update principle. In step (iii), new configurations in the Markov chain are proposed according
to Heff . The rejection or acceptance of a new configuration is then verified by the detailed
balance principle of the original HamiltonianH (step (iv)). The figure is taken from [4].

based on ML have been developed. One of them is called the Self–learning Monte
Carlo (SLMC) scheme [4, 50]. As presented in Fig. 3.3 it is composed of four steps.
The first step involves the generation of MC configurations with the usual local update
method. Subsequently, we extract from the MC samples the n-th nearest-neighbor spin-
spin correlations Cm

n =
∑
〈i,j〉n SiSj . The set of Cm

n and energies of the corresponding
configurations Em make up the training data. They are, in the next step, fed into a
linear regression algorithm with the aim of fitting Cm

n to the energies Em according to
the equation:

Em = E0 +
N∑
n=1

J̃nC
m
n , (3.3)

where E0 and J̃n are optimized during the training process. Since, as it turns out from
the numerical computations, the dominant contribution to the energy Em comes from
the first term involving nearest–neighbor interactions, all coefficients J̃n (n ≥ 2) can be
set to zero. In this way, a more complicated model can be transferred to a much simpler
Ising–type model to which we can apply the global–update method. The rejection
or acceptance of new propositions is, however, still verified by the detailed balance
principle (DBP) of the original Hamiltonian, ensuring that the new configurations are
extracted from the proper probability distribution.

3.3 Principal Component Analysis

The Principal Component Analysis (PCA) is an unsupervised learning algorithm that
serves as a primary tool for dimensionality reduction [51]. It consists of projecting the
N–dimensional input data X into a M–dimensional subspace (M < N ) to maximize
the variance of the input samples’ projections.
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first component

second component

Fig. 3.4 The first and second components obtained after PCA transformation. The components
are orthogonal to each other.

The PCA algorithm finds new coordinates (components) Y through the orthogonal
transformation O:

Y = XO, (3.4)

where O is a matrix composed of the eigenvectors O = [o1, o2, o2, . . . , oM ] that are a
solution to the following eigenproblem:

XTXol = λlol (3.5)

and correspond to the M largest eigenvalues λl. This operation ensures that the most
meaningful features (responsible for most of the variance) are extracted. In particular,
it allows visualization of the distribution of high–dimensional data by projecting it to a
2 or 3–dimensional space.

The usefulness of PCA in condensed matter physics problems has already been
demonstrated in several systems. In particular, PCA is able to reveal spatial patterns
of order and symmetry breaking. The mean value of the first principal component 〈p1〉
coincides with an order parameter for simple magnetic systems. On the other hand,
the second leading component that captures low–energy fluctuations in the system can
indicate the order of a phase transition [52, 53].

3.4 k–means

The k–Means algorithm is considered the simplest clustering method. It aims to identify
k groups of data points in an unsupervised learning manner [54]. The goal of this
algorithm is to assign data points in such a way as to minimize the sum of the squares
of the distances of all data points to its closest center µK [55], that is, to minimize the

25

54:1015620476



objective function J of the form:

J =
N∑
i=1

K∑
k=1

rnk||xi − µi||2, (3.6)

where {x1, x2, . . . , xN} is the set of unlabeled data points in D−dimensional space and

rnk =

0 when xn /∈ kth cluster,

1 when xn ∈ kth cluster.
(3.7)

This can be achieved by applying the following procedure. In the beginning, one
arbitrarily chooses the number of clusters K and its centers µK (based, for example,
on the data’s visual representation or the problem’s specification). The data points are
then assigned to their closest centers according to some chosen metrics. Subsequently,
the new centers µK are calculated as the mean points of the clusters K to which the
data points are properly reassigned. The procedure is repeated until there are no further
changes in the clusters’ assignments.

In the context of physics, the algorithm turns out to be useful in identifying the
Monte Carlo configurations corresponding to different phases after initial reduction to
2–dimensional space by the PCA algorithm (Sec. 3.3) [56].

3.5 Support Vector Machine

Another popular ML algorithm is the Support Vector Machine (SVM) [57]. Since it
requires data labeling, it is considered a supervised ML technique. Its main objective
is to find a hyperplane given by equation wx + b = 0 that separates two classes of
data points with a maximum margin, i.e., with the maximal distance of the hyperplane
to the closest data points (called support vectors) representing two categories. The
working principle of this technique can be regarded as the optimization problem aiming
to minimize the following loss function L:

L =
m∑
i=1

max{0, 1− yi · (wxi + b)}, (3.8)

where m is the number of data points, w and b are free parameters fitted during the
training. The loss function presented in Eq. (3.8) called the hinge loss is responsible for
maximizing the classification accuracy. It is always supplemented with a regularization
term which has the task of finding a hyperplane with the maximum margin. The method
is illustrated in Fig. 3.5.

Unfortunately, there exist a lot of datasets that are not linearly separable. In such
cases, the SVM cannot be applied. Fortunately, we can adjust the method also to non–
linear data sets. The way out of the problem is called a kernel trick and consists in
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Fig. 3.5 The scheme of the linear Support Vector Machine (SVM) algorithm. The solid line
represents the optimal hyperplane separating two classes of data. The dashed lines show two
hyperplanes passing through the support vectors defined as two data points (one from each
category) for which the distance to the hyperplane is the smallest.

mapping the original input data to a higher dimension using a kernel function where a
linear decision boundary between classes can be determined. The idea is presented in
Fig. 3.6.

Decision boundary

kernel trick

Fig. 3.6 A sketch of the kernel trick method. The set of data points non–separable in lower
dimension (left panel) is transformed to a higher dimension, where the separation is possible
(right panel).

When it comes to applications in the area of Hard Matter Physics, the algorithm
is able to successfully separate Monte Carlo configurations representing two different
phases [58, 59]. Moreover, it succeeds in evaluating the critical temperature by
revealing the form of the order parameter. The main drawback of this technique is
that the model is highly prone to the value of the regularization term, which needs to be
appropriately tuned.
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3.6 Neural Network

The simple machine learning methods introduced in the previous sections are, in
many cases, capable of capturing some interesting physics from MC configurations.
Moreover, they are less prone to overfitting, involve a relatively small number of
parameters, and do not need so many data samples to return the correct predictions.
On the other hand, they do not always deal with more complicated problems as they
have poor generalization capability and, in some cases, require extensive parameter
tuning. These issues do not apply to Artificial Neural Networks (ANNs), which can be
considered to be the most representative models of ML. The neural network is designed
in such a way as to mimic the processing of information by the human brain. The
basic building block of the neural network is called a neuron (Fig. 3.7). It represents a
non–linear function f of the weighted sum of the inputs x [60]:

ŷ = f (Wx) , (3.9)

where W = (w0, w1, w2, , . . . , wn) and x = (1, x1, x2, , . . . , xn) represent the
vectors of weights and inputs, respectively. Some common choices for the function
f are:

• f(x) = max(0, x) (ReLU),

• f(x) = 1/ (1 + e−x) (sigmoid),

• f(x) = tanh(x) = (ex − e−x) / (ex + e−x).

weighted sum activation function

Fig. 3.7 The scheme of a neuron. Here x = (1, x1, x2, , . . . , xn) stand for the input units to
the neuron, W = (w0, w1, w2, , . . . , wn) are the weights and

∑
symbolizes weighted sum of

inputs
∑n

i=1wixi. The output y = f(wixi), where f is an activation function.

The neural network comprises many such constructed neurons arranged in the
layers as depicted in Fig. 3.8. Such a structure is called a fully–connected neural
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hidden layer 1 hidden layer 2

input layer

output layer

Fig. 3.8 The scheme of a feed–forward neural network (FNN). The white circles indicate
the neurons arranged in 4 layers. The black arrows mark connections between neurons in
consecutive layers.

network (FNN). The first layer is composed simply of the input data, while the last layer
returns the output (prediction of a neural network). The intermediate layers between the
input and output are called hidden. When a neural network is composed of many layers,
we refer to it as a deep neural network.

Training of a neural network can be regarded as the process of fitting a known
input x to the output y by some multiparameter function. Therefore, the neural network
belongs to the class of supervised learning algorithms. The training process involves
minimization of a loss function L describing deviations of the predicted output ŷ from
the actual labels y. The typical forms of the loss functions are the following:

• LMSE = 1
N

∑N
i=1 (ŷi − yi)2,

• LBCE = − 1
N

∑N
i=1 (yi log ŷi + (1− yi) log(1− ŷi)),

• LCCE = − 1
N

∑N
i=1

∑k
j=1 yi,j log(ŷi,j).

Here N denotes the number of samples in a dataset, while k stands for the number
of classes. LMSE is usually used when labels take the form of decimal numbers. In
contrast, the binary cross-entropy loss function LBCE is applied to binary classification
problems, where the samples are labeled either by 0 or 1. The categorical cross–entropy
loss function is used in multiclass classification problems where the outputs ŷ of the
neural network are one–hot encoded, i.e., written in the form of binary vectors. In such
a case, if we are dealing, for example, with three different classes 1,2,3 and some
sample belongs to 2, then its label is written in the form y = [0, 1, 0]. Weights of a
neural network are typically found through minimization of the loss function with the
gradient–descent algorithm such as the ADAM (A method for stochastic optimization)
algorithm [61], realized in the framework of the backpropagation technique [62].

Another type of neural network is the convolutional neural network (CNN). It is
characterized by its superior image and signal processing performance compared to
FNN. Here, in contrast to FNN, the flow of information through the layers is a little
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Image Patch

Filter
Output

Fig. 3.9 The operation of convolution. The left part of the picture represents the input image
with an extracted image patch of the size 2× 2. In the middle part of the picture, we present the
filter (kernel) with its corresponding weights. The green number in the output image denotes
the result of the convolution operation marked with a star.

bit more complicated since the usual matrix multiplication is replaced by convolution
(Fig. 3.9). This adjustment substantially reduces the number of parameters to be trained.
Moreover, such construction of the CNN makes the algorithm focus on exploring
the input data’s local features, making it perfectly suitable for image classification
problems.

Note that the number of training parameters does not depend on the input size,
but rather on the arbitrarily chosen size of the filter. In the typical convolutional neural
network presented in Fig. 3.10, one or two convolutional layers (such for which the
convolution operation is applied) are placed at the beginning of the neural network.
They are frequently supplemented with pooling operations that reduce the dimension
of the output layer (by taking the mean or average of the emerging neurons). The CNN
layers are then followed by the feed–forward neural network returning the prediction of
the algorithm ŷ. The training of the CNN works on the same principle as in the case of
FNN, described above.

The applications of neural networks to the problems of condensed matter physics
are vast. One of the most prominent examples of the application of ML in HM physics
is the approach invented by Carrasquilla and Melko [63]. In their study, they feed
an FNN with both low– (for T0 � TC) and high–temperature (for T1 � TC) Ising
configurations and label them with zeros and ones, accordingly. In the next step, they
test such a trained NN on configurations corresponding to temperatures ranging from
T0 to T1. The neural network returns in each case the probability P (HTP ) that a given
configuration belongs to the high-temperature phase (HTP). The analogous probability
of a MC sample to belong to the low–temperature phase (LTP) is obtained simply by
subtraction P (LTP ) = 1− P (HTP ).

To illustrate the above–presented method, we apply this technique to 20 × 20

Ising configurations. The resulting probabilities P (HTP ) and P (LTP ) are depicted
in Fig. 3.11. The critical temperature estimated by the algorithm is associated with
the temperature for which a neural network is the most uncertain in its decision
(P (HTP ) = P (LTP ) = 0.5). It has been proved that in this simple case, the NN
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Convolutional 
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Max-PoolingInput data

Flatenning

Fully-connected
Neural Network

Output

Fig. 3.10 An example of the CNN architecture. An input image is subjected to the convolution
operation with a bunch of filters, creating a convolutional layer (CL). As the output of the
convolution process, we obtain a set of feature maps. They are subsequently pooled, i.e., the
group of neighboring neurons is replaced by its mean or maximum value. In the next step,
neurons are converted to a single long continuous vector which comes as an input to the fully–
connected neural network (FNN) returning probabilities of predictions.
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Fig. 3.11 The probability P(T) of the Ising configuration to represent the low–temperature
phase (LTP) (marked with blue) or the high–temperature phase (HTP) (marked with red). The
crossing point of two probability functions indicates the estimated value of critical temperature.
The vertical dotted line shows the reference value of the critical temperature TC ≈ 2.29 J/kB
determined with MC simulations.

learns magnetization – it is therefore trivially to accurately identify TC . Nevertheless,
recent studies suggest that the algorithm also deals quite well with systems where the
conventional order parameter does not exist [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74].

Neural networks also succeed in the identification of the quantum phase
transitions. It has been shown that they can distinguish different topological phases
[75] and solve frustrated quantum many-particle problems [76]. Finally, it is worth
mentioning of their enormous power in accelerating MC simulations [50, 77, 78]. It
turns out that it is possible to incorporate them into the Self–Learning Monte Carlo
scheme described in more detail in Sec. 3.2.

31

60:1067322362



latent space

encoder decoder

Fig. 3.12 The scheme of an autoencoder neural network. Purple blocks indicate the input and
output layers of a neural network. Green ones correspond to an intermediate layer returning the
reduced (latent) representation of the input data. Two red squares in the middle denote neurons
providing two–dimensional latent representation of a data point.

3.7 Autoencoder neural network

An autoencoder is a neural network that aims to map an input to itself [79]. Because
it does not require any data labeling, it is considered an unsupervised technique [80].
During the reconstruction process, it reduces the input data’s dimension, eliminating
noise and redundancy. Thus, it can be used, similarly to PCA, to reduce the
dimensionality of the data. However, regarding its non–linearity, the autoencoder
can grasp more non–trivial features of data than PCA, which is considered a linear
method [81].

The autoencoder neural network consists of two parts: encoder and decoder, as
illustrated in Fig. 3.12. In general, the encoder E transforms the input data x to some
latent space L, which usually has a lower dimension than the input. Then the decoder
D attempts to reconstruct the input. In mathematical language, it can be written as:

E(x) = L, D(L) = x′. (3.10)

In its simplest form, the autoencoder is made of several layers creating feed–forward
neural network with the following objective function J:

J =
1

N

N∑
i=1

||x′i − xi||2, (3.11)

which guarantees that the latent space L is constructed in such a way as to obtain the
greatest resemblance between x′ and x.

In the field of the condensed matter physics, the autoencoder is used to learn
the latent representation of the MC configurations, which is associated with an order
parameter of the model [53]. It is important to emphasize that there is little gain in using
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the autoencoder instead of a much simpler PCA algorithm in the case of the Ising–
type models. However, due to its non–linearity, it is extremely useful for analyzing
more complicated models of condensed matter physics. One example is the XY model,
which is characterized by continuous degrees of freedom. It implies that the number
of ordered phase realizations is infinite. It makes their detection with linear methods
impossible [53].

It is instructive to mention another popular algorithm that, similarly to PCA
and autoencoder, maps high–dimensional input data to the lower dimension while
preserving its structure. It is called t–SNE (t-distributed stochastic neighbor
embedding) [82]. This algorithm is able to grasp non–linear features of MC
configurations that allow detecting a percolation and Berezinskii–Kosterlitz–Thouless
(BKT) phase transitions [83].

3.8 Restricted Boltzmann Machine

Another method belonging to the class of unsupervised learning techniques is called
Restricted Boltzmann Machine (RBM) [81]. It can be regarded as the two–layer fully–
connected neural network for which the training is held in two directions, as depicted
in Fig. 3.13). The input dataset vi received by a visible layer is sent to a hidden layer in
a similar way as it happens in feed–forward neural networks. Then the hidden neurons
hi are sent back to the visible layer by the same transformation as before. The resulting
output v′i is in the next step compared to the initial input dataset vi. The parameters of
RBM are updated in such a way as to make the difference between vi and v′i the smallest
possible. This procedure is repeated until convergence, i.e., until the initial input data
are reconstructed.

Fig. 3.13 The scheme of the Restricted Boltzmann Machine (RBM). The first input layer
consisting of visible neurons vi is fully–connected with the hidden layer composed of the
neurons hj .

RBMs can be used to accelerate MC simulations. It can be achieved by teaching
the algorithm the functional form of energy based on the MC configurations derived
from the local update method [84]. These energies are then used to propose new
configurations according to the Boltzmann distribution ∼ e−βE/Z. The procedure
significantly increases the acceptance ratio and autocorrelation time of the simulations,
especially when calculating the energy in each MC step requires computationally
expensive diagonalization of the Hamiltonian. Other applications of RBM include
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reconstructing complex quantum wave functions from experimental data [85, 86, 87],
learning quantum states from spin configurations, finding the ground state of a system,
or describing the unit time evolution of complex interacting quantum systems [88].

3.9 Machine learning methods in time series classification

In the following sections, we introduce two algorithms used in the time series
classification problems of biological signals presented further in Section 4.4. Before
proceeding with a detailed description, we present basic definitions associated with
time series analysis.

3.9.1 Basics of time series analysis

A time series T = t1, t2, . . . , tn is defined as a set of n real–value observations listed
in time order. Every time series can be divided into subseries, i.e., subsequences of
length k < n created from sampling of k contiguous positions of the original time
series. It is common to use the method of sliding window, which divides the entire time
series into a set of sequences that can partially overlap. The length of this overlapping
region is called the stride. The method is illustrated in Fig. 3.14. Unfortunately, the time
samples obtained with this procedure may be too long for a machine learning algorithm.
To reduce their lengths, one can apply the Piecewise Aggregate Approximation (PAA
technique) [89, 90]. It downsamples a time series T of length l to another one of length
w < l by diving T into w equally–sized bins and calculate the mean values of data
points within each of them. The sequence constructed out of these mean values T ′
is considered a new, reduced representation of the time series T . Such an operation
substantially reduces noise while simultaneously preserving the trend of the original
sequence.

Time series

Time subseries Stride

Fig. 3.14 An example of the time series data. Two windows (green and purple) represent
subseries that partially overlap. The length of the overlapping region is called the stride.
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Many time series analysis methods require calculating the distance between two
series. We distinguish two basic kinds of such distances D:

• between two different series T = t1, t2, . . . , tL and S = s1, s2, . . . , sL of the
same length L:

D(T ,S) =

√√√√ L∑
i=1

(ti − si)2, (3.12)

• between a time series T of length n and its subseriesR of length k (k < n) which
is defined as the Euclidean distance ofR to its most similar segment in T :

D(R, T ) = min
j=1,...J

D(R, Tj), (3.13)

where j in an index that runs over all possible subseries of the time series T .

It is important to note that the above–presented definitions of the distances are
not limited to the euclidean metrics and may be generalized to other, much more
sophisticated metrics such as dynamical time warping (DTW) [91].

3.9.2 KNN algorithm

The KNN (K–Nearest Neighbors) method belongs to the class of supervised learning
techniques. Despite its simplicity, it is considered one of the most efficient algorithms
in time series classification problems [92, 93, 94]. The principle of this algorithm is
straightforward and can be summarized in a few steps enumerated below:

1. Selection of the number of neighborsK and the distance metric d (optimal choice
of these parameters can be found by the grid search over parameters’ space),

2. Calculation of the distances of a new sample to K nearest points,

3. Assignment of the sample to the most frequent category of the K nearest points
as presented in Fig. 3.15.

In physics, KNN can potentially be used to speed up MC simulations [95].

3.9.3 The shapelet method

The shapelet method is a novel data mining technique used for time series classification.
In contrast to the more popular KNN algorithm, it focuses on extracting local
representative features of the time series rather than the global ones. In many cases,
it yields better classification accuracy. Another advantage of this method is that the
generated results are easier to interpret, allowing a more insightful study of the data set.

In general, shapelets S are considered time series subsequences being maximally
representative of a class [5]. Their identification requires searching over all possible
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CLASS 1

CLASS 2

Fig. 3.15 The assignment of a new sample to the proper category. For a new sample marked
with a green triangle, the distance to the five nearest points (neighbors) is calculated with some
distance metrics (marked with black arrows). The assignment decision is based on the majority
voting – in this case, the sample will be assigned to the first class.

Fig. 3.16 A shapelet S presented along with the whole time series T . The vertical black lines
illustrate the euclidean distance ED(T, S). The figure is taken from [5].

subseries of length l (arbitrarily chosen) in the dataset for which the distance to the
series belonging to one class is significantly larger than the distance to the series
attributed to the other class. In this way, the distance of the shapelet to the time series
can be regarded as a discrimination measure between two (or more) classes. The brute–
force solution to the problem of finding optimal shapelets is time–consuming and,
for more challenging classification problems, requires a lot of computational power.
Fortunately, a method called learning time–series shapelet [96] significantly accelerates
the computations. This algorithm can be summarized in two simple steps:

1. Starting from the random shapelet of the length l,

2. Learning the optimal shapelet by minimizing the classification loss function.

Let us describe the above mechanism in more detail. For simplicity, we assume
only two classes of the time series data for which the labels yi are either 0 or 1. Then
the label ŷi predicted by the algorithm can be calculated with the logistic regression
model as [96]:

ŷi =
K∑
k=1

Mi,kWk, (3.14)

where Wk (weights) are free parameters learned during training. The coefficients Mi,k

indicate the distance of a time series Ti to a shapelet Sk according to the definition
presented in the previous subsection (Sec.3.9.1). The weights and biases and indirectly
shapelets S which are included in the definition of M are found by minimizing the loss
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function L(y, ŷ):

L(y, ŷ) = −
N∑
i=1

(
yi lnσ(ŷi) + (1− yi) ln(1− σ(ŷi)

)
, (3.15)

where σ(x) is the sigmoid. Note that the form of the objective function presented
in Eq. (3.14) is not ultimate and can be extended by some regularization terms. The
stochastic gradient descent algorithm finds parameters that minimize this function, just
as in neural networks.

One can visualize the results of applying the shapelet method in two-dimensional
(or three-dimensional) space. With this aim, it is sufficient to choose two (or three)
most discriminant shapelets s1 and s2 and calculate their distances to all samples in a
dataset k. In such a way, two (or three) feature vectors d(s1,k) and d(s2,k) of the form

D(s1,k) = [D(s1, k1),D(s1, k2), . . . ,D(s1, kn)]

D(s2,k) = [D(s2, k1),D(s2, k2), . . . ,D(s2, kn)]
(3.16)

are constructed, where D(sj, ki) stands for the distance of the subsequence ki to the
shapelet sj .

The presented method is highly effective in discriminating biomedical and food
spectrography signals, medical images, and faces [97].

3.10 The performance metrics in ML

This Section presents the basic performance metrics used to evaluate machine learning
models. One of the most common metrics applied in ML models is the confusion matrix
(CM). For a binary classification problem, it is a 2 × 2 table, whose cells contain the
number of correctly and incorrectly classified data (Fig. 3.17). The four matrix cells
contain:

• TP (True Positives) – number of samples that are labeled as 1 (True) and are
classified as such,

• TN (True Negatives) – number of samples that are labeled as 0 (False) and are
classified as such,

• FP (False Positives) – number of samples that are labeled as 0 and are classified
as 1,

• FN (False Negatives) – number of samples that are labeled as 1 and are classified
as 0.
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The distinction between well–classified and misclassified samples, on the basis of
CM, is thus straightforward. Correctly and incorrectly classified samples are situated
on the diagonal and on the off–diagonal elements of the CM, respectively.

True Negatives

True Positives
(TP)

(TN)

False Positives
(FP)

False Negatives
(FN)

TPR:
TP/(FP+TP)

TP/(TP+FN)

Accuracy:
(TP+TN)/

(TP+TN+FP+FN)

Recall: FPR:
FP/(TN+FP)

Fig. 3.17 The scheme of the confusion matrix. The table presents the number of correctly
classified (green-shaded cells) and misclassified (red-shaded cells) data samples. There are also
introduced common metrics associated with the definition of the confusion matrix (cells framed
with dashed lines).

Based on the CM, one can define other metrics to assess the ML models. They
are presented in Fig. 3.17. First of them is the accuracy (Acc) defined as the ratio
of the number of correctly identified samples (TP + TN) to the number of all samples
in a dataset (TP+FP+FN+TN). The other two are true and false positive rates (TPR
and FPR). TPR measures the proportion of the number of correctly identified positive
samples (TP) to the number of all data points that are predicted to be positive (TP +
FP). Similarly, FPR illustrates the proportion of incorrectly classified positive samples
(FP) to the number of negative samples (TN + FP). The last one is called the recall. It
indicates the ratio of the number of correctly recognized positive samples to the number
of all positive samples [55].

There also exists another quantity designed to present the diagnostic ability of a
binary classifier. It is called ROC (receiver operating characteristic) curve. It shows the
behavior of TPR as a function of FPR [98] for different discrimination thresholds TH ∈
[0, 1], that is, various values differentiating between positive and negative samples. The
overall discriminating power of the classifier is measured with the AUC–ROC (Area
Under ROC Curve) metrics defined as an integral under the ROC function. The higher
the value of AUC–ROC, the better the classifier makes predictions. In general, when:

• AUC–ROC = 1, the classifier is ideal,

• AUC–ROC = 0.5, the classifier is random,

• AUC–ROC < 0.5, the classifier performs worse than the random one.

Examples of ROC curves are presented in Fig.3.18.
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Fig. 3.18 The ROC curve illustrating TPR (True Positive Rate) as a function of FPR (False
Positive Rate) for different discrimination thresholds. The closer the curve is to the upper left
corner of the plot, the bigger the model’s performance.

3.11 Summary

In this Chapter, we briefly reviewed the most popular machine learning algorithms used
in condensed matter physics. It does not exhaust applications of machine learning
techniques in this area. Our goal was to show these methods’ potential in this field of
physics and provide the fundamental concepts essential for understanding the practical
part of this thesis.
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CHAPTER 4

Results

In this Chapter, we present the main results of the studies conducted as part of the
doctoral dissertation. We start by describing an attempt to determine the critical
temperature of the BKT transition from the MC configurations (Sec. 4.1). We then
introduce the method based on the unsupervised–learning techniques allowing us to
identify the order parameter for various spin models and discriminate between strong
first–order and second–order phase transitions (Sec. 4.2). The subsequent Section of
this Chapter (Sec. 4.3) illustrates the results of the learning by confusion scheme applied
to different microscopic models undergoing first– and second–order phase transitions.
In the last Section (Sec. 4.4), we demonstrate the applicability of the novel data mining
methods to analyze the ion channel activity.

4.1 A study of Berezinskii–Kosterlitz–Thouless phase transition with
machine learning algorithms

This Section presents the machine learning approach to the Berezinskii–Kosterlitz–
Thouless (BKT) phase transition. We apply it to three different spin models shortly
introduced in Sec. 2.5: the classical XY model (c–XY), the quantum XY model (q–
XY), and the phase–fermion model (PF). We identify the critical temperature TC using
classical methods of analysis and juxtapose the obtained results with the neural network
output.

4.1.1 Estimation of the critical temperature based on the helicity modulus analysis

As we pointed out in Sec. 2.5, the Berezinskii–Kosterlitz–Thouless phase transition
represents a special class of topological phase transitions. It is associated with a subtle
change of the correlation function and the unbinding of the vortex–antivortex pairs at the
critical point TBKT . In contrast to conventional phase transitions, the BKT transition is
not signaled by a peak in thermodynamic quantities, such as heat capacity or magnetic
susceptibility. Nevertheless, it can be identified by the analysis of the helicity modulus

Υ. It is a quantity defined as the second–derivative of the free energy with respect
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to an externally imposed global twist of spins [99]. For an arbitrary lattice size L, Υ

approaches the value [100]:

Υ (TBKT (L)) =
2

π
TBKT (L), (4.1)

where TBKT (L) is the critical temperature. Knowing Υ from the MC simulations
performed for a given lattice size L, we can establish which temperature satisfies the
condition imposed in Eq. (4.1) and associate it with TBKT (L). After repeating this
procedure for different lattice sizes, we can apply the finite–size scaling technique and
provide a rough estimate of the critical temperature TBKT in the thermodynamic limit.

We adopt the above–described method to calculate the value of TBKT for the three
models mentioned at the beginning of this section, i.e., the c–XY, q–XY and PF models.
The first step requires the generation of spin configurations for different lattice sizes.
For this purpose, we perform MC simulations. In the case of the c–XY model, we use
the usual Metropolis MC algorithm. It cannot be straightforwardly applied to the PF
model, which involves, apart from classical, also quantum degrees of freedom. The
modified version of the Metropolis algorithm used to simulate this model is analogous
to that applied to the FK model (Appendix C). The main difference between the two
approaches is that in this case, we propose a new state by changing the spin direction
on one random lattice site (instead of changing the ion position as in the FK model).
For the q–XY model, the spin configurations generated from quantum MC simulations
are provided by our collaborators [70].

In order to calculate the helicity modulus Υ from the obtained MC configurations,
we use the following formula [101]:

Υ =
1

L2

(〈 ∑
<i,j>

cos(θi − θj)(x̂ · ε̂ij)
〉
− 1

T

〈
(
∑
<i,j>

sin(θi − θj)x̂ · ε̂ij)2

〉)
, (4.2)

where L is the size of the lattice, x̂ and ŷ are unit vectors representing two perpendicular
directions in the plane of the lattice, T denotes the temperature, and ε̂ij indicates the
direction of the bonds i−j. Knowing Υ, we estimate TBKT (L) for different lattice sizes
L as the crossing of Υ with the line 2

π
T . Then, using the fact that TBKT (L)− TBKT ∝

log(L)−2 [101, 102] we find the value of TBKT in the thermodynamic limit. The results
of the applied procedure are presented in Fig. 4.1 for all three models.

A more accurate value of TBKT can be determined from the solutions of the
Kosterlitz renormalization group (RG) equations [26]. They illustrate a general
dependence of the Υ(TBKT (L)) = Υ(L) obtained for a given lattice size L on its value
Υ(TBKT ) = Υ(L =∞) = Υ(∞) in the thermodynamic limit [103, 104]:
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a) b)

c) d)

e) f)

Fig. 4.1 The helicity modulus Υ as a function of temperature for c–XY model a), PF model
with g = 4t and c) q–XY models with EC = 0.1 e). The right panel of the figure illustrates
the procedure of finite–size scaling of the critical temperatures TBKT (L). Blue dots indicate
values of TBKT (L) obtained from the crossings of Υ(L) with the line 2T

π . The black lines are
the linear fits to the set of estimated TBKT (L). Crossings of these lines with the vertical axis
are associated with the critical temperature TBKT obtained in the thermodynamic limit.

Υ(L) = Υ(∞)

(
1 +

1

2

1

ln(L) + C

)
, (4.3)
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where C is an undetermined constant. Making use of the fact that TBKT (∞) also obeys
the Eq. (4.1), we can insert the expression Υ(∞) = 2

π
TBKT to the Eq. (4.3). As a result,

we obtain:

Υ(L) =
2

π
TBKT

(
1 +

1

2

1

ln(L) + C

)
. (4.4)

It is important to emphasize that Eq. (4.4) applies only to values of Υ(L) obtained
at the critical temperature TBKT (L). Therefore, the fit of Υ corresponding to different
lattice sizes L should yield the smallest error exactly at TBKT . Taking this into account,
at the fixed temperature T we can try to fit various Υ(L) corresponding to different
lattice sizes and temperature T to Eq. (4.4). The constant C is the parameter of this
fit. Repetition of this procedure for many different values of T allows us to find a
temperature for which the fit to Eq. (4.4) returns the smallest error. We then associate
it with the critical temperature in the thermodynamic limit. The results of applying the
above-described method are, for all the three models, illustrated in Fig. 4.2. The blue
stars indicate values of δ corresponding to different temperatures T . Their positions are
fitted with two linear functions (solid orange lines), the crossing of which determines the
critical temperature TBKT in the thermodynamic limit. We see that the results obtained
with this technique are compatible with those presented in Fig. 4.1 and acquired by
other authors [30, 105, 106, 107, 108].

Fig. 4.2 The root mean square error δ of fitting Υ obtained from MC simulations to Eq. (4.3)
for the c-XY model (a), the PF model (b), and the q-XY model (c). The blue stars indicate
values of δ corresponding to different temperatures T . Solid orange lines show fits of two linear
functions fitted to the data points. Their crossing point determines critical temperature TBKT in
the thermodynamic limit.

4.1.2 Estimation of the critical temperature with the neural network

In this Section, we verify whether an alternative approach based on the ML can
successfully identify a topological phase transition in the models discussed above.
Our attempt is motivated by the fact that such techniques are capable of correctly
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indicating the critical temperature of Ising–type [63, 109, 110] and quantum phase
transitions [110, 111, 112]. The problem of estimating TBKT with ML methods
is well known in the literature and has been tackled by other authors. Obviously,
correct identification of the Berezinskii–Kosterlitz–Thouless phase transition requires
the recognition of topological defects such as vortices and antivortices. However, it
is much easier for a neural network to find the difference between low– and high–
temperature phases based on magnetization M , which according to the Mermin–
Wagner theorem [23] can not be treated as an indicator of the BKT phase transition.
To overcome this issue, most authors try some feature engineering on the raw spin
configurations before feeding them into a neural network. They transform MC samples
into vortex configurations [69], histogram of spin orientations [113], or spin–correlation
functions [72]. Yet in another paper, the weight matrices are analyzed to estimate the
critical temperature [114].

In our approach, we start with an analysis similar to that presented in [63]
and briefly described in Sec. 3.6. More precisely, we train a neural network on
MC configurations belonging to the low–temperature (T0) and high–temperature (T1)
phases. Next, we test predictions of such a trained network on configurations not yet
seen generated at intermediate temperatures lying in the interval T ∈ (T0, T1). The
neural network returns the mean probabilities that the tested configurations belong to
the high–temperature phase P (HTP ). Then the temperature for which P (HTP ) = 0.5

is associated with the critical point.

On the basis of the results, we confirm the conclusion made in the other papers:
a simple feed–forward neural network without any extra preprocessing steps cannot
correctly identify the critical temperature of the BKT phase transition. Therefore, to
make predictions more accurate, we transform the MC configurations represented by
angles (θ1, θ2, . . . , θN) to vectors of trigonometric functions of the form:

(cos θ1, cos θ2, . . . cos θN , sin θ1, sin θ2, . . . , sin θN) .

In this way, we take into account the continuous character of spin directions, which can
take any value from the interval 〈0, 2π). The transformation implies that almost parallel
spins corresponding, for example, to the angles 0.01π and 1.99π, although numerically
distant, are represented by close numbers. To summarize, the entire procedure includes
several steps:

1. Generation of MC configurations at temperatures ranging from 0.1J to 1.6J , 0.1J

to 1.5J and 0.02t to 0.2t for the c–XY, q–XY and PF models, respectively. For
the q–XY and PF models, the number of configurations is increased by operations
of rotations and translations.
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2. Transformation of raw spin configurations represented by angles (θ1, θ2, . . . , θN)

to vectors of trigonometric functions of the form:

(cos θ1, cos θ2, . . . cos θN , sin θ1, sin θ2, . . . , sin θN) .

3. Repetitive training of the neural network on configurations corresponding to m
temperatures lying below TBKT and above TBKT (assuming that the arrangement
of temperatures around the critical point is symmetric).

4. Test of the neural network on not yet seen MC configurations. The evaluation of
the predicted critical temperature and statistical errors of this estimation.

Repetitive training of a neural network consists of applying the 10–cross validation
technique [115] repeated 10 times, each time starting from different initial conditions.
In this manner, we obtain the total number of 100 values of P (HTP ) for each
temperature, which is sufficient to measure the uncertainty of a neural network’s
predictions. A similar analysis has already been performed in [73]. The computational
details regarding the neural network architecture and the training process are presented
in Appendix A.

The results from applying the above-mentioned steps suggest that the estimated
critical temperature strictly depends on the choice of T0 and T1. It may stem from
the fact that configurations corresponding to the deep low–temperature phase differ
from those generated at the temperature closer to the critical point (but still in the low–
temperature phase). The neural network learns in these two cases different features that
change the prediction of TBKT . To further investigate this problem, we try to answer
the following questions: (i) How does the choice of temperatures T1 and T2 affect the
value of the predicted critical temperature? (ii) What is the optimal distance between
T0 and T1 that allows one to discriminate between configurations corresponding to
temperatures slightly below and above TBKT ? To address these queries, we perform
a thorough analysis of TBKT for several sets of training data generated for different T0

and T1.
For all three models, we illustrate the results obtained as a function of the lowest

and highest temperatures T ′0, T
′
1 lying below TBKT taken into the training. We express

them in relation to the actual value of the critical temperature TBKT (i.e., indicated by
the solutions to the RG equations) with the auxiliary variable τ :

τ =
T ′1 − T ′0

TBKT − T ′0
. (4.5)

The estimated values of the probabilities P and the corresponding statistical errors for
different values of m and τ are for three analyzed models illustrated in Figs. 4.3, 4.4,
and 4.5.
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As for the c–XY model, we obtain a quite accurate value of the critical temperature
even when the neural network is trained only on two extreme temperatures (m = 1,
τ = 0) representing fully ordered and completely random spin states. At the same time,
we observe that the neural network is extremely uncertain of its own predictions for
temperatures lying in the vicinity of the phase transition. This result may suggest that
in order to discriminate between configurations corresponding to temperatures T ≈
TBKT characterized by large thermal fluctuations, learning the ’pure’ low and high-
temperature phase is not sufficient. Indeed, as can be inferred from Fig. 4.3, an increase
in τ substantially decreases the prediction errors. In Fig. 4.3d) we show TBKT plotted
in a wide range of τ . It can be seen that TBKT starts to converge to the actual value of
τ ≥ 0.65, reaching the highest accuracy for τ ≈ 0.95.

It should be pointed out that, contrary to what one might expect, that the neural
network does not learn magnetization M . To demonstrate this, we add to Fig. 4.3c)
a green dashed line representing M . As can be noticed, it clearly deviates from the
solid red line corresponding to the probabilities returned by the ML model. It suggests
that the neural network learns more complicated, non–linear features hidden in MC
configurations.

When it comes to the q–XY model, the spread of probabilities (standard
deviations) is much smaller than that of its classical counterpart. Furthermore, it turns
out that m = 3 is sufficient to obtain a prediction deviating from the actual one only by
2%.

For the PF model, the situation is a little different. Accurate prediction of critical
temperature requires configurations generated at temperatures T ≈ TBKT in the process
of training – the convergence to the actual value is reached for m = 6. For m = 1 the
estimation error is approximately equal to 20%. The spread of probabilities is also
quite large, which indicates that the obtained results are affected by a non–negligible
error. This probably stems from the fact that the configurations corresponding to the
temperatures lying in the vicinity of the phase transition are much more different from
those generated at extreme low and high temperatures. This may be due to the character
of this model. While in the c–XY and q–XY models the interaction is direct and limited
only to the nearest neighbors, in the case of the PF model we observe the effective
interaction mediated by fermions distributed over all lattice. This effect manifests itself
in the form of Υ (Fig. 4.1). For the c–XY and q–XY models, the helicity modulus
converges even for small lattice sizes. This does not happen for the PF model, for which
the values of Υ (and hence the energies) strongly depend on the size of the system. It is
a result of the delocalization of fermions, which behave as if they were confined in an
infinite quantum well. In this case, the energies of the particles depend on the size of
this well.
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Fig. 4.3 The probability P of configurations to belong to the high–temperature phase of the
c–XY model for (a) m = 1, (b) m = 10, and (c) m = 16. The vertical error bars show
the standard deviations. The solid red line illustrates the best fit to the function of the form
P (T ) = 0.5 tanh [α (T − TBKT)] + 0.5, where α and TBKT are fitting parameters. The dashed
red line shows 1 − P (T ) interpreted as the probability of a configuration belonging to the
low–temperature phase. The black arrows indicate 2m temperatures used during the training
(m temperatures corresponding to the low–temperature phase and the same number to high–
temperature phase, equidistant from the actual critical temperature TBKT marked by the solid
black vertical line). The dashed green line in panel c) shows magnetizationM . The quantity τ is
defined in Eq. 4.5. The temperatures on which the neural network is trained range from 0.10 J
to 0.70 J and from 1.10 J to 1.60 J with stepsize 0.05J and from 0.750 J to 1.050 J with
stepsize 0.025J . On the right panel one presents the function of predicted temperature TBKT
on τ and the error of this prediction expressed in %. The red horizontal line represents the true
critical temperature.

4.1.3 Summary

The studies presented in this Section verified the capacity of a neural network to identify
the Berezinskii–Kosterlitz–Thouless phase transition. We used a simple feed–forward
neural network and fed it with spin configurations transformed into the trigonometric
representation. We repeated the procedure for three different models. We found that
such a constructed neural network does not learn the global features of configurations
such as magnetization. The results depicted in Fig. 4.3 suggest that the slope of
magnetization is much smaller than the probability function P obtained from the
neural network computations. We suppose that the ML model is able to learn some
topological features. On the other hand, it cannot grasp the subtle change in the spin–
spin correlation function that occurs at the critical point. Otherwise, it would accurately
indicate the actual value of TBKT .
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Fig. 4.4 The same as in Fig. 4.3 but for quantum XY model. The temperatures on which the
neural network is trained range from 0.1 J to 0.8 J and from 1.2 J to 1.5 J with stepsize 0.1 J
and from 0.85 J to 1.15 J with stepsize 0.05 J .
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Fig. 4.5 The same as in Fig. 4.3 but for PF model. The temperatures on which the neural network
is trained range from 0.02t to 0.20t with stepsize 0.01t.

Furthermore, we have shown that for all the three models studied, the prediction
of TBKT strictly depends on the number of temperatures 2m used for training. As
expected, the higher the number of various configurations (higher value ofm) in the data
set, the better the accuracy of the predictions. However, the minimal value ofm required
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to obtain the precise critical temperature affected by the small error varies between the
models analyzed. For the c–XY and q–XY models, it is sufficient to take configurations
relatively distant from the critical point to obtain a pretty accurate value of the critical
temperature. For the PF model, the situation is different. To receive the correct value
of TBKT , it is necessary to train the neural network at the temperatures T ≈ TBKT .
It suggests that the configurations corresponding to the fully ordered state and those
representing a highly disordered phase are much more different from those generated at
the temperatures lying in the vicinity of the transition. It may come as a consequence
of the different characteristics of the PF model. Here, we do not observe the direct
interaction between neighboring spins as in the case of the other two models. Instead,
we deal with an effective long-range interaction mediated by the itinerant fermions.
This phenomenon is responsible for the unusual properties of the PF model manifested,
for example, in the character of the helicity modulus Υ.

However, to properly determine the value of the critical temperature, it is beneficial
to train the neural network not only on extreme temperatures that are far from the critical
point, but also to the configurations corresponding to the temperatures T ≈ TBKT

containing features crucial for the accurate identification of the BKT transition.

4.2 Unsupervised learning techniques as a tool to study phase transitions

One of the crucial problems regarding the physics of phase transitions is determining
the order parameter. Usually, it is represented by a quantity that is non-zero in the
low–temperature ordered state and drops to zero above the critical point (Sec. 2.3). For
instance, in the Ising model magnetization plays the role of the order parameter.

Whereas for many models, the order parameter can be easily identified, there
are systems for which this task is quite challenging. Examples of such systems are
topological insulators [116], quantum spin hall states [117], or spin glasses [118].
Therefore, developing new techniques that specify parameters that characterize phase
transitions is crucial for a more profound understanding of these phenomena.

Here, we introduce a simple method that involves two basic unsupervised machine
learning techniques: PCA and k–Means (more accurate descriptions of these methods
can be found in Sec. 3.3, 3.4). The main objective of the PCA method is to
reduce the dimensionality of the dataset and simultaneous disclosure of its essential
characteristics. Recent studies have confirmed this algorithm’s utility in determining
the order parameter for various systems [53, 119], its ability to discriminate between
different phases, and estimate the critical point [56, 120]. It has been shown that
for simple magnetic systems, the mean absolute value of the first principal component
〈|p1|〉 coincides with an order parameter [121]. We follow this proposal and verify if
〈|p1|〉 can serve as an order parameter for two simple spin models of condensed matter
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physics: the Potts and Blume–Capel models, introduced in Sec. 2.5. We juxtapose the
obtained value of the first principal component 〈|p1|〉 = 〈|FC|〉 with another, newly
proposed order parameter constructed from the PCA representation. We extend these
studies to the FK model, which, apart from classical, also exhibits quantum degrees of
freedom. Furthermore, we demonstrate that the PCA, in conjunction with the k–Means
clustering technique, can discriminate between strong first– and second–order phase
transitions.

4.2.1 Determination of the order parameter

It is known that a system usually falls into one of its ground states in the low–
temperature phase. For instance, in the Ising model, the spontaneous breaking of the
rotational symmetry leads to the development of two equally probable ferromagnetic
states. It is shown in Fig. 4.6 where we plot the probability distribution of magnetization
P (M) out of MC-generated data. For the temperature below the critical point, T < TC

(Fig. 4.6 a)), the two peaks of P (M) at M = 1 and M = −1 clearly indicate the
presence of two possible spin directions: either up or down. We can distinguish two
separated Gaussians, which in the vicinity of the phase transition (T ≈ TC , Fig. 4.6 b) )
start to expand and overlap. In the high–temperature phase, i.e., for T > TC (Fig. 4.6c)),
they turn into one Gaussian centered at M = 0.

In Fig. 4.7, we show the results of PCA applied to the same data set as in
Fig. 4.6. The top row displays the distribution of raw spin configurations projected
on a 2–dimensional space by the PCA algorithm. The bottom row illustrates the
corresponding probability distribution of the first principal component P (FC). A
striking similarity between P (M) and P (FC) is evident: P (FC) qualitatively follows
the same temperature dependence as P (M).

For other models studied, we observe similar results of PCA. Here, we demonstrate
results for the q–state Potts (qP), Blume–Capel (BC), and the half–filled Falicov–
Kimball (FK) models described in Sec. 2.5. They undergo two kinds of phase transition
depending on the Hamiltonian parameters. We choose the parameters such that the
transition is either strong first– or strong second–order one (Tab. 4.1). It is worth
highlighting that all models discussed here are characterized by discrete degrees of
freedom. The spin in the qP model can take one of q equally spaced directions. In
the BC model for spin S = 1, a lattice site is either unoccupied or occupied by a spin
pointing up or down. The FK model allows for two possibilities: a site occupied by a
heavy (localized) particle or a vacant one. Thus, the qP, BC, and FK are described by q,
three, and two degrees of freedom, respectively. Its number coincides with the number
of ground states for qP and FK models. The situation is different for the BC model.
Although this model allows for three degrees of freedom, it is characterized only by
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Fig. 4.6 Probability distribution P (M) of magnetization M for the 2–dimensional Ising Model:
a) at low temperature T < TC ; b) in the vicinity of the phase transition T ≈ TC ; c) in a high
temperature T > TC . The solid blue lines represent P (M) generated from MC simulations,
while solid green lines are fits to the numerical data. For a) and b) the fitting function is
a bimodal Gaussian distribution, for c), data is fitted to a single Gaussian distribution. MC
simulations are performed for lattice size L = 16.
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Fig. 4.7 The PCA representation of the Ising configurations (top rows) for a) T < TC , b)
T ≈ TC and c) T > TC . The corresponding probability distributions of the first principal
component P (FC) are shown in the bottom row. The data correspond to the lattice size L = 16.
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two ground states.

Model Continuous phase transition Discontinuous phase transition

FK U=4.0 U=0.5

qP q=2 q=10

BC D=0 D=1.98

Table 4.1 Hamiltonians’ parameters of three models used in this study. FK, qP and BC are
abbreviations from Falicov–Kimball, q–state Potts and Blume–Capel models, respectively. A
middle column indicates the parameters for which presented models undergo second–order
(continuous) phase transition. The last column illustrates the parameters for which the transition
is of first–order (discontinuous).

The PCA transformation of MC configurations representing 10–state Potts in
different temperatures is presented in Fig. 4.8. The results obtained for the remaining
models listed in Tab. 4.1 are shown in Figs 4.7 (Ising model overlaps with the 2–state
Potts model), 4.9, 4.10, 4.11 and 4.12. It can be observed that for all models, in the
low-temperature phase (T < TC), data points are collected in separate clusters. As
expected, their number is equal to the number of ground states. In the vicinity of
the phase transition (T ≈ TC), the distances between these clusters drop abruptly.
However, we can still discern bunches of overlapping points. In the high–temperature
phase, the transformed MC samples create one large, uniform cloud from which one
cannot isolate any group of samples. We observe a slight deviation from the above–
mentioned description for the BC model D = 1.98 (Fig. 4.10). In this case, in the
low–temperature phase, one can distinguish two separate clusters corresponding to two
magnetization directions. At T ≈ TC , an additional cluster appears in the central part
of the plot (Fig. 4.10 b)). Plascak et al. [122] have recently discussed the presence of
this metastable state and associated it with three possibilities of lattice site occupation
allowed by this model.

In order to quantitatively describe the differences in PCA results, we introduce the
mean distance D between the clusters. We apply the k–Means algorithm (Sec. 3.4) to
PCA–transformed MC configurations, which divides the data points into groups and
identifies their centers ci. In each case, we set the number of clusters k the same as
the number of ground states. Next, we calculate the mean distance D between two
consecutive centers of the clusters ci = (xi, yi) and ci+1 = (xi+1, yi+1) using the
formula:

D =
1

k − 1

k−1∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2, (4.6)

which is a measure of the separation level between emerging ground states as a function
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Fig. 4.8 The PCA representation of spin configurations corresponding to 10–state Potts model
(linear size of the lattice L = 16) for the temperature T < TC (a)), T ≈ TC (b)) and T > TC
(c)).

−10 0 10
FC

−5.0

−2.5

0.0

2.5

5.0

S
C

a)

T < TC

−10 0 10
FC

−10

−5

0

5

10

S
C

b)

T ≈ TC

−10 0 10
FC

−5

0

5

S
C

c)

T > TC

Fig. 4.9 The PCA representation of spin configurations corresponding to the Blume–Capel
model D = 0 (linear size of the lattice L = 16) for the temperature T < TC (a)), T ≈ TC
(b)) and T > TC (c)).
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Fig. 4.10 The PCA representation of spin configurations corresponding to the Blume–Capel
model D = 1.98 (linear size of the lattice L = 16) for the temperature T < TC (a)), T ≈ TC
(b)) and T > TC (c)).

of temperature. The distance D calculated for the Ising configurations in the low–
temperature phase is illustrated in Fig. 4.13.

We then compare D with the actual order parameter, which for the Potts and
Blume–Capel models corresponds to global magnetization M . For the FK model,
following [41], we associate the order parameter with the renormalized density–density
correlation function Gn, which captures short and long correlations between ions. It is
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Fig. 4.11 The PCA representation of MC configurations corresponding to the Falicov–Kimball
model U = 4.0 (linear size of the lattice L = 16) for the temperature T < TC (a)), T ≈ TC (b))
and T > TC (c)).
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Fig. 4.12 The PCA representation of MC configurations corresponding to the Falicov–Kimball
model U = 0.5 (linear size of the lattice L = 16) for the temperature T < TC (a)), T ≈ TC (b))
and T > TC (c)).
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Fig. 4.13 The black horizontal line indicates the value of D defined as the distance between
clusters’ centers determined by the k–Means algorithm.

defined as:
Gn = −4(gn − 0.25), (4.7)
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where

gn =
1

4N

N∑
i=1

∑
τ1,τ2=±n

w(ri)w(ri + τ1x̂+ τ2ŷ). (4.8)

In Eq. (4.8) N denotes the number of lattice sites, x̂, ŷ are the unitary unit vectors, and
w(ri) = wi ∈ {0, 1} indicates whether the lattice site i is occupied by an ion (wi = 1)
or vacant (wi = 0). This definition of the order parameter ensures that it is equal to
1 for the checkerboard state (the ordered state corresponding to low temperatures) and
close to 0 for randomly distributed ions (Sec. 2.5).

To begin with, we compareD with the mean value of the first principal component
〈|p1|〉 and magnetization M for the qP and BC models. The results are presented in
Fig. 4.14. We find that in all cases, 〈|p1|〉, as well asD, correlates, up to a normalization
constant, with magnetization M . In the case of the 2–state and 10–state Potts model
〈|p1|〉 fits almost perfectly to M except for the tiny fluctuations in the region before
phase transition. On the other hand, we observe a slight deviation of D compared to M
for the temperatures T > TC in the case of the 10–state Potts model. This deflection
can be attributed to the fact that the algorithm has to optimally divide the large and
coherent cloud of data points into 10 clusters, which is a challenging task. As for the
BC model, we obtain perfect compatibility of 〈|p1|〉 with M in both the cases under
study, i.e., for D = 0 and D = 1.98. When it comes to D, it correlates well with M
for D = 0, but we observe large fluctuations of this quantity in the vicinity of the phase
transition for D = 1.98. We suspect that the emergence of the additional metastable
state (Fig. 4.10b) is responsible for the weird behavior of D in this temperature region
– the k–Means algorithm tries to fit two clusters to a three-cluster pattern, resulting in a
significant error in the order parameter estimation.

The situation is the most interesting for the FK model. As has been observed in
Fig. 4.15, for U = 0.5 the 〈|p1|〉 and D correlate with functions G1 and G2. Still, this
correlation is smaller when compared to the case of magnetic systems (Fig. 4.14): 〈|p1|〉
andD do not drop to zero in a high–temperature phase. For the bigger value of potential
U = 4.0, the quantities D and 〈|p1|〉 fit better to G2 than to G1 function, especially for
T > TC . We suspect that the finite size of the system is responsible for the discrepancy
in the rate at which long G2 and short correlations G1 drop to zero. It is possible that
for larger lattice sizes, the emerging differences between G1 and G2 would disappear,
and both would converge to the predicted order parameter D. Such a scenario is most
likely for U = 4.0 – it is known that for a large value of interaction, a system belongs
to the same universality class as the Ising model. However, these hypotheses have not
yet been confirmed and require further investigation.
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Fig. 4.14 The magnetization M in the function of temperature for 2–state and 10–state Potts
model (upper panel) along with the distance between clusters D and mean absolute value of the
PCA first component 〈|p1|〉. The analogous plots are presented in the lower panel for the Blume
Capel model with D = 0 and D = 1.98.
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Fig. 4.15 The renormalized correlation functions G1, G2 in the function of temperature for the
FK model U = 0.5 and U = 4.0 along with the distance between clusters D and mean absolute
value of the first component of the PCA transformation |〈p1〉|.

4.2.2 Identification of the nature of a phase transition

Apart from the order parameter, another relevant information that can be obtained in the
context of a phase transition is its nature. We generally distinguish two types of phase
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transitions: continuous and discontinuous (more information about the underlying
differences between them can be found in Sec. 2.2). Our idea is to find out if the simple
algorithm combing two basic unsupervised techniques introduced in this Section is able
to, apart from determining the order parameter, also correctly identify the order of a
phase transition. With this aim, we additionally study the shape of emerging clusters.
Note that this idea is not entirely new. The evolution of the probability distribution of
the order parameter and its various moments as a function of temperature for systems
that undergo different types of phase transitions have already been widely studied, for
instance, in [42, 122, 123, 124, 125, 126]. Furthermore, it has been shown in [127] that
differences in the temperature evolution of the Potts ground states can be detected by a
neural network and used to estimate the order of a phase transition.

To verify whether the form of emerging clusters can provide essential information
about the nature of the undergoing phase transition, we analyze them at two levels of
proximities, as suggested in [128]. These are:

• dissimilarities – measures how objects associated with different classes are far
from each other,

• similarities – measures how objects belonging to the same class are close to each
other.

The first step has already been taken. In the preceding Section, we introduced
the quantity D (Eq. (4.12)) as the measure of dissimilarity between the ground states.
As for the similarity, we take the silhouette coefficient [128, 129] as its criterion. It is
defined in terms of 2 points illustrated in Fig. 4.16:

• intra–cluster distance a associated with the mean distance between a given
sample and other samples assigned to the same class,

• mean distance b between a given sample and all other points in the next nearest
cluster.

Then the silhouette coefficient si of a sample i reads:

si =
b− a

max(a, b)
. (4.9)

As can be inferred from Eq. (4.9), the value of si lies within the interval 〈−1, 1〉. It
has a straightforward interpretation. When b is much larger than a (si ≈ 1), we observe
a high level of separation between a sample i and the nearest cluster. On the other hand,
when b ≈ a (si ≈ 0), the groups of points are weakly separated and partially overlap.
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Fig. 4.16 Illustration of two scores a (intra–cluster distance) and b (inter–cluster distance)
used in the expression for the silhouette coefficient formulated in Eq. (4.9).

In this case, we cannot unequivocally assign the sample i to one cluster or another. The
worst-case scenario is when a is much larger than b (si ≈ −1). It suggests that the
sample is misclassified and should be assigned to another cluster.

In addition to the silhouette coefficient, numerous other methods exist evaluating
the clustering performance, such as Calinski–Harabasz index [130] or V-measure [131].
However, we chose this measure because of its simplicity and clear interpretability.

To assess whether the mean value of s can provide some qualitative differences
between systems undergoing first– and second–order phase transition, we calculate its
dependence on temperature and the number of clusters k. Our findings are illustrated in
Figs. 4.17, 4.18 and 4.19, where we present the mean value of the silhouette coefficient
s(k) as a function of the number of clusters k at three different moments of a phase
transition: just before (T < TC), during (T ≈ TC) and just right after (T > TC). In all
cases, we find the largest value of (si)max ≈ 1 for the T < TC and k corresponding to the
number of ground states assigned to a given model. Since we observe well–separated
clusters in this temperature region, this result is not so surprising. Then we discover
that with an increase in temperature, the maximum value of (si)max decreases. At the
same time, the distribution of si for different values of k becomes flatter. This means
that the algorithm has difficulties in optimally dividing the data.

Moreover, one can notice that the distribution of s(k) differs among models
exhibiting first– and second–order phase transitions. We can interpret this observation
as follows. When a system undergoes a second–order phase transition, it maintains
the ’memory’ about the number of the ground states even in a high–temperature phase.
It makes the distributions of s(k) similar in three analyzed temperature regimes. The
situation is different for the first–order phase transition. In this case, in the vicinity but
still in the low–temperature phase, the best separation is obtained when k is equal to
the number of ground states. When T ≈ TC , the system falls almost immediately into
a weakly separable, fully–disordered state – the ’memory’ about the number of ground
states is quickly lost, and the algorithm cannot select an optimal number of clusters
to divide the data at T > TC . To gain a more quantitative picture of the arisen s(k)

distributions presented in Figs. 4.17, 4.18, 4.19 but for a broader range of temperatures,
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Fig. 4.17 The silhouette coefficient s(k) in the function of the number of clusters k obtained
for the Potts model exhibiting first– (q = 10, lower panel) and second–order phase transition
(q = 2, upper panel) just right before (T < TC), during (T ≈ TC) and just right after (T < TC)
phase transition.

Fig. 4.18 The silhouette coefficient s(k) in the function of the number of clusters k obtained
for the Blume–Capel model exhibiting first– (D = 1.98, lower panel) and second–order phase
transition (D = 0, upper panel) just right before (T < TC), during (T ≈ TC) and just right after
(T < TC) phase transition.

we also plot the standard deviation of the silhouette coefficient σ(s) defined as:

σ(s) =

√√√√ 1

N

N∑
k=1

(
s(k)− s(k)

)2

, (4.10)
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Fig. 4.19 The silhouette coefficient s(k) in the function of the number of clusters k obtained for
the Falicov–Kimball model exhibiting the first– (U = 0.5, lower panel) and second–order phase
transition (U = 4.0, upper panel) just right before (T < TC), during (T ≈ TC) and just right
after (T < TC) phase transition

.

where N = 9 is associated with the number of different values of k = {2, . . . , 10},
s(k) is the silhouette coefficient associated with k clusters and s(k) is the mean value
of s(k). These results are depicted in Fig. 4.20. It can be noticed that the criticality
of the models undergoing first–order phase transitions is much better pronounced. In
this case, the quantity σ(s) abruptly drops to zero at the transition point. On the other
hand, for systems undergoing second–order phase transition, to observe the uniform
distribution of s(k), we need to go far away above the critical point.

4.2.3 Summary

In this Section, we presented studies on emerging clusters obtained after PCA reduction
of the raw Monte Carlo configurations (without applying any feature engineering) to 2

orthogonal dimensions. We found that in the low–temperature phase, the data split into
several well–separated clusters. Its number corresponds to the number of ground states
of a model analyzed. Near the critical point, the groups of points begin to merge. Then,
for the temperatures T > TC , the PCA representation of the MC configurations takes
the form of one large, non–separable cloud. To quantitatively describe this evolution,
we applied the k–Means algorithm and demonstrated that the distance D between the
clusters correlates with the actual order parameter in most cases. Subsequently, we
studied the PCA representation of the MC configurations in the context of the nature
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a) b)

c) d)

e) f)

Fig. 4.20 The standard deviation σ(s) of the silhouette coefficient s in the function of
temperature for three different models undergoing second– (a), c), e)) and first– (b), d), f))
order phase transitions enumerated in Tab. 4.1.

of the phase transition. For three different models undergoing first– and second–
order phase transitions, we analyzed the values of the silhouette coefficient s(k) as a
function of temperature and the number of clusters k. We discovered that the systems
exhibiting first–order phase transitions ’forget’ about the number of ground states right
after the critical point. On the contrary, systems characterized by the second–order
phase transition save this information even at temperatures T � TC .

In closing, there are systems for which it is easy to identify the order parameter
based solely on physical grounds, the symmetry of the analyzed model, and intuition.
There exist, however, physical models for which this task is quite challenging. We
hope that our findings will substantially facilitate determining this quantity in such
cases. Furthermore, our results suggest that machine learning methods can also capture
differences in the finite–size effects of systems undergoing first–order and second–order
phase transitions. It means that they can possibly be applied as a tool for extracting
information about the transition type from MC configurations.
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4.3 A learning by confusion approach to study the nature of phase
transitions

Determination of the order parameter is straightforward in the thermodynamic limit,
i.e., when the volume of a system goes to infinity, V → ∞. In the case of first–order
phase transitions (discontinuous), we then observe a singular behavior of the free energy
at the transition point. It leads, in turn, to discontinuities in thermodynamic quantities,
such as the heat capacity Cv or magnetic susceptibility χ, and experimentally to the
release of latent heat. Meanwhile, the correlation length remains finite. On the contrary,
during second–order phase transitions (continuous), the correlation length diverges at
the critical point, but the physical quantities pass smoothly through the transition. This
different behavior of the physical observables at the critical point is associated with the
phase coexistence occurring during first–order phase transitions (Sec. 2.2).

The above–described discrepancies are, unfortunately, not detectable in Monte
Carlo (MC) simulations, which always deal with finite–size systems [132, 133,
134]. Instead of a sharp, well-defined transition, we observe a rounded peak in
thermodynamic observables at the critical point in both types of phase transitions.
Although the width of the emerging peak and its position scale differently with the
lattice size L in these two cases, it is extremely difficult to establish the order of a phase
transition unequivocally, based solely on the shape of this peak itself.

Fortunately, the phenomenological theory of the finite–size effects occurring in
the temperature-driven first order–phase transition developed in [42, 135, 136, 137,
138] can give us some hint of whether we deal with the first– or second–order phase
transition. This theory is based on the fact that the energies of the MC configurations
generally obey the Gaussian probability distribution P (E). The mean value of P (E) is
related to the infinite-lattice energy E0, and the width C is proportional to the value of
heat–capacity in the thermodynamic limit [42, 138, 139]. Then P (E) can be expressed
by the following formula:

P (E) =
A√
C

exp
[
− (E − E0)2 · Ld

2kBT 2 · C
]
, (4.11)

where A is a normalization constant, E is the energy, T stands for the temperature, and
kB denotes the Boltzmann constant. The remaining parameters in Eq. (4.11), i.e., L, d,
stand for the linear size of the lattice and the dimension of a system, respectively.

However, such a form of P (E) is not maintained in the vicinity of the first–order
phase transition. The deviation from the standard energy distribution is attributed to
phase coexistence and associated with it, the release of latent heat at the critical point.
In this case, P (E) is composed of two weighted Gaussians centered at internal energies
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d)c)

Fig. 4.21 The energy distributions P (E) generated at the critical point for the models
undergoing first (right panel) and second (left panel)–order phase transitions: a) The Potts model
and the second–order phase transition; b) The Potts model and the first–order phase transition.
c), d) same as a), b) respectively but for the Blume–Capel model, e),f) same as a), b) but for
the Falicov–Kimball model. Points show MC data, lines are best fits of single/double Gaussian
functions to the data. The linear size of the lattice is in all cases set to L = 16.

corresponding to coexisting low– (E−) and high–temperature (E+) phases:

P (E) = A

[
a+√
C+

exp
[−(E − (E+ + C+∆T )

2kBT 2C+

]
+

a−√
C−

exp
[−(E − (E− + C−∆T )

2kBT 2C−

]
,

(4.12)
where A is a normalization constant, C+,− and E+,− are specific heats and energies
attributed to two phases, ∆T = T − TC denotes the deviation of temperature T from
the critical point TC and kB stands for the Boltzmann constant. The constants a+,− are
complicated functions of specific heats C+,−, temperatures T and number of coexisting
states. Their explicit forms can be found in [42].

In Fig. 4.21, we present the probability distributions P (E) for the Potts, Blume-
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Capel and Falicov-Kimball models exhibiting first– and second–order phase transitions
described in more detail in Sec. 2.5. It is apparent that the shapes of these distributions
are in agreement with the theory mentioned above. We observe a two–peak structure
of P (E) in the vicinity of the first–order transition (right column in Fig. 4.21) and only
one peak when the transition is of the second order (left column in Fig. 4.21).

a)

b)

Fig. 4.22 First–order phase transition in the Falicov–Kimball model: a) example snapshots of
lattice configurations taken at the phase coexistence point. Left and right panels correspond to
the low– (LTP) and high–temperature (HTP) phases respectively; b) probability distribution of
energy P (E) at the transition temperature. Points represent MC data, blue line is the best fit
to the data. The vertical dashed lines mark the configurations’ energies presented in the upper
image. The parameters are T = 0.028 kB/t, U = 0.5t.

Additionally, in Figs. 4.22, 4.23 and 4.24, we illustrate two different states generated in
T ≈ TC for models undergoing first–order phase transitions. In all cases, one exhibits
more disorder than the other, suggesting the coexistence of two distinct phases near the
criticality.

Although widely accepted, the Gaussian method suffers from certain limitations.
The decision about the order of a phase transition is based solely on qualitative results.
It may also require MC simulations for bigger systems when the assessment of the order
for smaller sizes is not conclusive (which often happens when we have to discriminate
between weak first— and second–order phase transitions) [127]. To overcome, at least
partially, these problems, apart from studying the shape of P (E) at the transition, it is
instructive to consider the Binder–Challa cumulant VL [42, 135, 136, 137] defined as a
function of the moments of energy distributions:

VL = 1− 〈E4〉
3〈E2〉2 . (4.13)

It turns out that VL exhibits quite different behavior during two kinds of phase
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a)

b)

Fig. 4.23 The same as in Fig. 2.10 but for the Potts model. The parameters are T = 1.4 kB/J ,
q = 10.

a)

b)

Fig. 4.24 The same as in Fig. 2.10 but for the Blume–Capel model. The parameters are T =
0.58 kB/J , D = 1.98.

transitions. That is, when P (E) is described by a single Gaussian then (Eq. (4.11))
VL → 2

3
in the thermodynamic limit [42]. It happens for systems undergoing the

second–order phase transition in the whole temperature range. The situation is slightly
different during first–order transitions for which the double peak structure of P (E)

appearing near the criticality leads to a non–trivial limit of the cumulant at T = TC :

(
VL
)
min

= 1− 2(E4
+ − E4

−)

3(E2
+ − E2

−)
, L→∞. (4.14)

Eq. (4.14) suggests that when a system undergoes a first–order phase transition, we
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Fig. 4.25 The Binder–Challa cumulant VL (Eq. 4.13) as function of temperature T for FK, Potts
and BC models in the regime of second–order (left panel of the Figure) and first–order phase
transitions (right–panel of the Figure). In the case of FK model the values of VL are of order
10−6, hence we define ṼL = (VL − 0.6666)× 104.

should observe a clear minimum in VL at the critical point. As presented in Fig.4.25,
a well pronounced minimum is observed for the qP and BC models. For the FK
model the distinction between two types of phase transition based on the shape of VL is
impossible due to a very small amplitude of VL and the lack of qualitative differences in
VL for continuous and discontinuous transitions. In both types of phase transitions,
the cumulant VL changes very slowly with temperature – its relative change is of
the order 10−4 for a continuous phase transition and 10−6 for a discontinuous phase
transition. Such an unusual behavior of VL may be attributed to the fact that while
qP and BC models are purely classical, the FK Hamiltonian predicts the existence
of two subsystems involving localized, classical particles (ions) and itinerant quantum
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fermions (electrons). It has been demonstrated in Ref. [41] that both subsystems exhibit
the same value of critical temperature (based on the positions of the peaks of the charge
susceptibility CDW for ions and the heat capacity for electrons). Nevertheless, there
exist two different energy scales in this model. The first one is associated with the
indirect interaction between ions mediated by the electrons. The second one, defined
by the Fermi energy, significantly exceeds the value of kBTC . Since the quantity VL is
calculated from the fluctuations of the fermion energy, they affect the phase transition
only to a small extent. It is apparent in the temperature dependence of the cumulant.

The cumulant method has some limitations also for classical models. The
distinction between first– and second–order phase transitions can be challenging for
models at the edges of parameters separating the nature of phase transition. Perhaps the
best example illustrating this situation is the determination of the phase transition order
for 4–state and 5–state Potts models [127]. In this case, MC simulations performed
for large lattice sizes are required to determine the order of the transition. Such
calculations, in turn, are time–consuming and computationally expensive. The situation
is even worse for systems with quantum degrees of freedom, which require exact
diagonalization of the Hamiltonian in each MC step. It is therefore crucial to find
alternative methods to identify the nature of the phase transition. One of the potential
new techniques, based on the learning by confusion scheme is presented in the next
paragraph.

The learning by confusion (LBC) method is an innovative machine learning
algorithm combining supervised and unsupervised learning [110]. It was designed
to detect phase transitions in various models of condensed matter physics. It has
been demonstrated that the algorithm copes well with complex networks [140],
classical spins, and frustrated magnetic models [141]. Furthermore, it is capable of
correctly identify the nuclear gas–liquid [142], double, topological [143] quantum
phase transitions [110, 144, 145], those that occur in polaritons [146] and ferrimagnetic
alloys [147].

Fig. 4.26 Typical shape of the performance of the neural network P (T ′C) in the learning by
confusion method plotted versus the alleged critical temperature T ′C . The middle peak in the
characteristic W–shape of P (T ′C) indicates the critical temperature TC predicted by the neural
network.
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The method consists in feeding the Monte Carlo configurations into a neural
network labeled according to the proposed value of critical temperature T ′C ∈
[Tmin, Tmax]. The algorithm is then trained on such provided data, and its performance
P (T ′C) on a test set is evaluated. This procedure is repeated for different values of
the alleged critical temperature T ′C ranging from Tmin to Tmax. Ultimately, we get the
overall function of P (T ′C) on T ′C ∈ [Tmin, Tmax]. As illustrated in Fig. 4.26 it takes the
form of W–shape. We can explain such a form of P (T ′C) in the following manner. When
the proposed temperature T ′C = Tmin or T ′C = Tmax, then we assume that all samples
represent either high–(HTP) or low–temperature phase (LTP), respectively. The neural
network (NN) learns then trivially the identity function, and its performance is equal to
100%. In contrast, when T ′C < TC or T ′C > TC some configurations are mislabelled
(Fig. 4.27), i.e., states that belong to the same phase are labeled differently. The
algorithm cannot capture the differences between configurations representing the same
phase, resulting in a lower prediction accuracy. We then say that the NN is ”confused”
(hence the algorithm naming). When T ′C is equal to the actual critical temperature, then
the ”confusion” disappears, and the performance of NN is maximal. Therefore, T ′C
returning the maximum value of P (T ′C) is associated with the critical point identified
by the algorithm.

labeled as
HTP

labeled 
incorrectly 

labeled as
LTP

Fig. 4.27 The procedure of labeling configurations within the confusion scheme. Tmin and Tmax
are the minimum and maximum temperatures taken into account as potential candidates for the
critical temperature. TC and T ′C stand for the actual and proposed values of the critical point,
respectively. It implies that all configurations generated at T ∈ (T ′C , TC) are mislabeled.

4.3.1 Result of application of the LBC scheme – theoretical analysis

In the following Section we will construct a simple intuitive model of the neural network
performance for the LBC method. The model is based on the statistical properties
of the continuous and discontinuous phase transitions discussed above. Next, we
will juxtapose the theoretical predictions with the numerical results obtained for the
discussed models.

4.3.1.1 Continuous phase transitions

When a system undergoes a continuous phase transition, we do not observe phase
coexistence at the critical point. Then the fraction α of the configurations corresponding
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to the low–temperature phase can be expressed as a function of temperature:

α(T ) =

1 for T < TC ,

0 otherwise.
(4.15)

In such a case, the number of mislabeled configurations increases linearly with the
interval |TC − T ′C |, where TC and T ′C denote the proposed and actual value of critical
temperature, respectively. The situation is illustrated in Fig.4.28.

Fig. 4.28 The fraction α of low–temperature phase as the function of temperature T . TC
stands for the actual value of critical temperature (i.e., obtained, for instance, from the MC
simulations). The red dashed lines indicate the interval of mislabeled temperatures.

To investigate the influence of α(T ) on neural network performance P (T ′C , TC),
we introduce a measureM of the number of mislabeled data as a function of T ′C :

M(T ′C) =

∫ Tmax

Tmin

f(T ′C , T )dT, (4.16)

where the function f(T ′C , T ) returns the fraction of incorrectly labeled data points
corresponding to the temperature T ′C , while Tmin and Tmax denote the minimum and
maximum temperature of the MC configurations taken into account during the analysis.
From Fig. 4.28 we conclude that:

f(T ′C , T ) =

1 for T ′C < T < TC or TC < T < T ′C ,

0 otherwise.
(4.17)

By inserting Eq. (4.17) into Eq. (4.16) we obtain M(T ′C) = |T ′C − TC |. Assuming
that the performance of a neural network P (T ′C) can be, in the vicinity of the phase
transition, expressed as P (T ′C) ≈ 1 − M(T ′

C)

Tmax−Tmin
we conclude that in the case of

continuous phase transition, P (T ′C) decreases linearly with |T ′C − TC |.

4.3.1.2 Discontinuous phase transitions

The characteristic feature of discontinuous phase transitions is the phenomenon of
phase coexistence arising in the vicinity of the critical point. The coexistence of low-
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and high-temperature phases requires a modification of the model since fractions of
both phases can exist below and above TC . We introduce two different temperatures:

• T1 - the temperature below which all configurations belong to the low–
temperature phase,

• T2 - the temperature above which all configurations belong to the high–
temperature phase.

The interval T ∈ (T1, T2) corresponds to the area of phase coexistence, with the fraction
of the high–temperature phase increasing linearly with T . Taking these assumptions
into account α(T ) can be expressed as follows:

α(T ) =


1 for T ≤ T1,
T2 − T
T2 − T1

for T1 < T < T2,

0 for T ≥ T2.

(4.18)

Note that the linearity assumed in Eq. (4.18) is well justified. In Fig. 4.29, we present
the evolution of the energy distribution P (E) generated in the temperatures T ≈ TC

for a model undergoing discontinuous phase transition on the example of 10–state
Potts model. We can conclude that the heights h of two Gaussians corresponding to
coexisting phases (E− and E+) vary linearly with temperature T . This dependence
is shown in Fig. 4.30, where the crossing of fitted linear functions signals the critical
temperature TC .

From Eq. (4.18), one can infer that the fraction of incorrectly annotated data should
be nonzero even when T ′C = TC . Illustration of the number of mislabeled data points
for three different values of T ′C is presented in Fig. 4.31. Here, just as in the case of a
continuous phase transition,M(T ′C) increases linearly with the distance |TC − T ′C | for
T ′C < T1 and T ′C > T2. This dependence is different for temperatures T ′C ∈ (T1, T2).
However, calculating the accurate expression forM(T ′C) requires careful consideration
of three different cases illustrated in Fig. 4.31. For the sake of clarity, the derivation
of M(T ′C) is presented in Appendix B. Here we present the main results of these
calculations:

M(T ′C) =


1
∆

(T ′C − TC)2 + ∆
4

for |T ′C − TC | < 1
2
∆,

|T ′C − TC | for |T ′C − TC | > 1
2
∆,

(4.19)

where ∆ = T2 − T1.
It is necessary to emphasize the limitations of this simple theoretical model in

the description of both types of phase transitions. In the case of continuous phase
transition, it applies solely to the system in the thermodynamic limit. In this situation,
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Fig. 4.29 The energy distribution P (E) of MC configurations generated in the temperatures
T ≈ TC for the 10–state Potts model.
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Fig. 4.30 Heights h of the Gaussians emerging from energy distributions P (E) in the function
of temperature calculated for the 10–state Potts model. Two solid lines represent the linear
fits to the peaks of P (E) corresponding to the low– (E−) and high–temperature (E+) phases,
respectively.

we do not have to deal with the finite–size effects, which can alter the ultimate neural
network performance. The studies presented in Refs. [110, 143, 147, 148] show that
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Fig. 4.31 The fraction α of low–temperature phase as function of temperature T . TC stands
for the true critical temperature, while T ′C denotes the assumed one. T1 and T2 are boundary
temperatures between which two phases coexist. The dashed lines in figure indicate the amount
of mislabeled data. The scheme is presented in three different situations: a) TC = T ′C , b)
T1 < T ′C < TC , c) TC′ < T1

finite–size effects may be responsible for a decrease in accuracy at the critical point,
i.e., P (T ′C = TC) < 1. On the other hand, description of the first–order phase
transition refers only to finite–size systems. When L→∞, the phase coexistence is not
observed, and two temperatures T1 and T2 in Eq. (4.18) converge to one. Nevertheless,
the developed model does give us some idea of what we can expect from numerical
calculations. The performance of a neural network predicted by this model for both
types of phase transitions is shown in Fig. 4.32. The model gives a well pronounced
maximum of P (T ′C) for the continuous phase transition, while for the discontinuous
one should expect a rather gentle peak of P (T ′C) around TC .

4.3.2 Result of application of the LBC scheme – numerical analysis

In this Section, we juxtapose the numerical results obtained with those predicted with
the simple toy model developed in Sec. 4.3.1.1, 4.3.1.2. The numerical part of our study
involves the application of the LBC scheme to the Falicov–Kimball (FK), q–state Potts
(qP), and Blume–Capel (BC) models, which were already analyzed with unsupervised
learning methods (Sec.4.2).

It is important to emphasize that, in contrast to the assumptions of the theoretical
model, our numerical analysis postulates the usage of different performance metrics.

73

102:1044624283



Fig. 4.32 The performance of a neural network P (T ′C) = 1−M(T ′
C)

δT as the function of distance
|T ′C − TC | predicted by the theoretical toy model in the case of continuous and discontinuous
phase transition.

Here, instead of the more popular accuracy, we use the AUC–ROC metrics defined in
Sect. 3.10. The reasons behind such a choice, along with the computational details, can
be found in Appendix C.

As the main result of the studies presented in this Section, we obtain the AUC–
ROC curves as a function of the proposed critical temperature T ′C . The results for
all models are illustrated in Fig. 4.33. For models exhibiting a second–order phase
transition (left panel of Fig. 4.33), we obtain a clear maximum that indicates the
critical temperature T ′C . As can be seen, TC obtained from LBC scheme coincides
with TC identified with MC simulations. The situation is more complicated when the
transition is discontinuous (right panel of Fig. 4.33). In this case, the shape of the AUC–
ROC curve strongly depends on the model under study. We find that for qP and BC
models the maximum is readily detectable in the position we expect from the numerical
computations. It is, however, a little less pronounced compared to the continuous
phase transition. Surprisingly, we discover strikingly different behavior for the FK
model (Fig. 4.33b). In this case, the AUC–ROC curve takes the shape of a plateau
spreading over a wide temperature range just below TC . In this temperature region, the
neural network ’overfits’ gaining the capability to distinguish between configurations
belonging to the same, low–temperature phase.

To explain this unusual characteristic, we study low–temperature MC samples
simulating the FK model for discrepancies that impact the high accuracy level. In
this aim, for all temperatures, we calculate the mean value of the defect concentration
C(T ). By a ’defect’, we consider any 2 × 2 window deviating from the checkerboard
pattern representing the ground state of the model (Fig. 2.10). Three kinds of such
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Fig. 4.33 The AUC–ROC metrics as function of temperature for a), b) FK, c), d) qP and e), f) BC
models in different parameter regimes enumerated in Tab. 4.1 obtained as a result of application
of the LBC scheme. The dashed vertical line indicates the critical temperature determined from
MC simulations.

’defects’ (up to the symmetry transformations) are presented in Fig. 4.34. The results
of C(T ) calculations performed for four FK models characterized by different values
of potentials U are illustrated in Fig. 4.35. We find that in all cases C(T ) grows with
temperature. The reason for that is thermal fluctuations that disturb the ideal order: the
configurations depart more and more from the checkerboard pattern, which is entirely
lost above the critical point. In the case of the FK model U = 0.5 (Fig.4.35a)), almost
all configurations generated below T < 0.01 kB/t exhibit complete ordering. In the
temperatures T ∈ [0.01, 0.028] kB/t, ’defects’ proliferate rapidly with the temperature.
It implies that the neural network (NN) can learn differences in concentrations and, as a
result, discriminate between MC configurations assigned to the same low–temperature
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phase. It, in turn, leads to the development of the vast plateau in the AUC-ROC function
in this temperature range. The situation is similar to the FK model U = 1 (Fig.4.35b)).
For the higher potential values, i.e., U = 2.0 (Fig.4.35c)) and U = 4.0 (Fig.4.35d)), we
observe clear maxima in neural network performance. Simultaneously, the number of
’defects’ and its growth rate are lower compared to the models undergoing first–order
phase transition. It makes discrimination between configurations corresponding to the
same phase more challenging than in the previous case.

Fig. 4.34 Three different kinds of defects occurring in the FK configurations defined as
deviations from the checkerboard pattern. The black and white cells indicate either the presence
or absence of an ion at the lattice site.

Fig. 4.35 The AUC–ROC (blue dots) metrics juxtaposed with the concentration of defects C (red
dots) as function of temperature obtained for the FK model for different values of interaction U .

To further substantiate our conjecture, we additionally depict Gassians
representing distributions of the defects concentration P (C) for the FK model exhibiting
second–order (left column of Fig. 4.36) and first–order phase transitions (right column
of Fig. 4.36). When the transition is continuous, Gaussians representing three close
temperatures almost completely overlap, regardless of whether they correspond to the
low– or high–temperature phase. It makes the difference in the concentration of defects
C for two close temperatures marginal and, as a consequence, leads to the inability
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Fig. 4.36 The probability distribution of the ’defects’ concentration P (C) for different
temperatures. Left column refers to the continuous phase transition (FK model U = 4), while
the right one represents the discontinuous phase transition (FK model U = 0.5).

of the NN to discriminate between configurations. The situation is different when the
transition is first–order. In this case, the distributions P (C) overlap only partially for
three close temperatures in the plateau region (Fig. 4.36d) and the vicinity of the critical
point (Fig. 4.36e). The neural network recognizes these discrepancies, which results in
high classification performance.

In order to verify whether the neural network can discriminate between
configurations belonging to the same phase we perform a simple theoretical experiment.
We take MC samples at two different temperatures, T1 and T2 corresponding to the
same phase in three various combinations: T1 and T2 < TC , T1 and T2 ≈ TC ,
T1 and T2 > TC , labeled as they would belong to two diverse classes. Subsequently,
we feed them into a neural network and repeat this procedure for different values of
∆T = |T2 − T1|. The results of this analysis are illustrated in Fig. 4.37. Based on this
picture, we can conclude that when a system undergoes a second–order phase transition,
the classification abilities of NN are similar in the entire temperature range (Fig. 4.37a)-
c)). The situation is more interesting for the first–order phase transition. In the plateau
region, Fig. 4.37d)), we achieve almost perfect accuracy, in line with the previous
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results. This performance decreases near the critical point (Fig. 4.37e)). The neural
network loses all its classification power in the high–temperature phase ((Fig. 4.37 f)),
which results resulting in the abrupt drop of AUC–ROC function.

Fig. 4.37 The AUC–ROC metrics as the function ∆T , where ∆T = T1 − T2 corresponds to
the difference in temperature of MC configurations fed into the neural network. The left and
right panels represent the case of continuous (FK model U = 4.0) and discontinuous (FK model
U = 0.5) phase transitions, respectively. The calculations are performed for different positions
of temperatures in relation to the critical point.

It is instructive to do the analogous analysis also for the other two models (qP and
BC). Here, by a ’defect,’ we understand the deviation from a fully ferromagnetic state
occurring in the 2 × 2 fragment of the MC configuration (Fig. 4.38). The results are
presented in Fig. 4.39. The behavior of C(T ) in the case of qP and BC models exhibiting
second–order phase transition (Fig. 4.39a), c)) suggests a similar growth of defects as
in the FK model U = 4.0 (Fig. 4.35d)).

On the contrary, we observe different dependence of C(T ) on the temperatures for
the first–order transition (Fig. 4.39b),d)). The defect concentration increases slowly for
the temperatures T < TC and jumps suddenly for T ≈ TC . Such a characteristic
justifies the lack of plateau in this temperature range – the neural network, with
regard to the small number of defects and its slow growth, cannot distinguish between

78

107:9466563826



a) b) c)

Fig. 4.38 Definitions of defects (marked in red) occurring in MC configurations simulating the
FK model a), BC model b) and 5–state Potts model c).
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Fig. 4.39 The defect concentration C as a function of temperature for the qP (panels a) and b))
and BC (panels c) and d)) models.

configurations corresponding to two close temperatures. On the other hand, this
step–like the behavior of C(T ) makes the configurations generated for T < TC and
T > TC easily distinguishable, leading to a higher value of AUC–ROC at T ≈ TC

for discontinuous phase transitions. The relation between an order of phase transition
and the maximal value of the AUC–ROC function is shown in Fig. 4.41. Indeed, for
all three models studied in the context of the LBC scheme, we observe slightly higher
values of AUC–ROC in the case of discontinuous phase transition.

To confirm the hypothesis about the relationship between the number of defects
and the neural network (NN) performance, we run explicit tests verifying the
algorithm’s ability to identify different defect concentrations. We train the neural
network with configurations corresponding to two close temperatures T1 and T2 =

T1 + δ, which are labeled as low- and high-temperature phases (δT = 0.005 kB/t
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Fig. 4.40 Qualitative differences between configurations corresponding to two close
temperatures T1 and T2 = T1 +δ plotted as a function of T = T1. The solid blue line represents
the neural network performance AUC −ROC in discriminating configurations generated at T1

and T2. The red dashed line shows the derivative of the defect concentration C′(T ). Panels a),
c), and e) present data for discontinuous phase transition, while b), d), and f) for continuous
phase transitions, for the FK, qP and BC models respectively. The vertical black dashed line
shows the value of Tc extracted from MC simulations.

for the FK model and δT = 0.02 kB/J for the BC and Potts models). We then
evaluate the ability of NN (AUC-ROC) to distinguish between these configurations
and repeat the whole procedure for a wide range of different temperatures T1 and T2.
Subsequently, we investigate how this effectiveness translates into the slope of C(T ).
The results are presented in Fig. 4.40, where AUC-ROC is compared to the derivative
of C(T ) approximated as C ′(T ) ≈ ∆C(T )/δT , where ∆C(T ) = C(T + δT ) − C(T )].
It can be seen that the AUC-ROC is exactly 0.5, which is the accuracy of a random
classifier, unless C ′(T ) is really large. When the transition is second–order (left panel
of Fig. 4.40), then AUC-ROC ≈ 0.5 in the entire temperature range. This stems from
the fact that a change in defect concentration is not large enough to make the neural
network predictions accurate. Note that this result is compatible with the shape of
P (C) distributions presented in Fig. 4.35 for the FK model. On the contrary, when the
transition is of first–order, we observe a sharp peak around Tc in C ′(T ). For the qP and
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c)

a)

b)

Fig. 4.41 The maximal value of AUC–ROC metrics obtained as a result of the application of
the LBC scheme to three different models. The vertical dashed line indicates the value of the
model’s parameter separating between first–order (FO) and second–order (SO) phase transition.

BC models, it happens for a very narrow temperature range in the vicinity of the phase
transition and is caused by the step–like increase in C(T ). The situation is different
for the FK model, for which we observe a plateau spreading over a large temperature
range in the AUC–ROC function in the same region as depicted in Fig. 4.33 when the
network was trained using the entire dataset. In our view, it is enough to prove that the
algorithm can qualify the configurations generated in temperatures lying in the plateau
as qualitatively different. Our preliminary results suggest that it may be not a finite–size
effect. In Appendix D, we present the AUC–ROC curves obtained for the FK model
for larger lattice sizes. For U = 0.5 we discover that the plateau emerging in the AUC–
ROC function is maintained even for larger systems. At the same time, we find out
that for U = 4.0 the maximum value of NN performance increases with lattice size
L and reaches 1 in the thermodynamic limit, in agreement with the theoretical model
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presented in Sec. 4.3.1.1. This result also indicates that differences in the maximal
AUC–ROC occurring between first– and second–order phase transitions (Fig. 4.41) are
finite–size effects and can not be used to discriminate between these two kinds of phase
transitions.

4.3.3 Summary

In the study presented above, we analyzed results of application of the LBC scheme
to three different models undergoing first– and second–order phase transitions. First,
we developed a theoretical model designed to predict the shapes of performance curves
P (T ′C) for two types of phase transitions. According to it, we should expect higher
values of P (T ′C) and a more emphasized maximum in the case of the second–order
phase transition. Next, we juxtaposed the predictions from the model with the numerical
calculations.

In the case of the classical qP and BC models, the algorithm copes well with the
first– as well as the second–order phase transitions. In both cases TC extracted from
the position of maximum of AUC-ROC coincides with TC from MC simulations, also
in agreement with the theoretical model. However, we did not observed substantial
differences in AUC-ROC amplitudes for the first and second-order transitions, as
predicted by our simple theory.

For the FK model the LBC method gave trustful results only in the case of
the second–order phase transition. Similar the other two models, the algorithm’s
performance displayed a well pronounced maximum at true TC . For the first–order
phase transition (U = 0.5), instead of a sharp peak predicted by the theoretical model,
we observed a wide plateau in the AUC-ROC curve, with AUC-ROC ≈ 1. The plateau
spreads from T < TC up to T ≈ TC leading to the ambiguity of TC . Such a result
was unexpected since the plateau region goes far beyond the temperature range for the
phase coexistence.

To explain the unusual behavior of the P (T ′C) occurring for the FK model
exhibiting first–order phase transition, we calculated, for all models under study, the
rate at which defects arising in MC configurations grow with temperature T . We find
that for the FK model that exhibits a first–order phase transition, the number of defects
proliferates rapidly with T for T < TC . It then saturates for T ≈ TC . Such a situation
does not occur for the second–order phase transitions, for which we observe a slow
increase of the defects in the whole temperature range. At the same time, we discover
that the dynamics of C(T ) differs for purely classical models. In the case of the qP
and BC models, one can notice a sudden increase in the number of defects during the
first–order phase transition. On the contrary, for the second–order phase transition, the
behavior of function C(T ) is the same for all analyzed models.
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Our numerical results deviate from the predictions given by the simple theoretical
model. This may result from the fact that phase coexistence has a marginal impact
on the obtained shape of the AUC–ROC curves, and the other finite–size effects are
more critical. Moreover, we observe that they are not universal and may vary from one
microscopic model to another.

To conclude, we have shown that the LBC method can not be, in most cases,
used to distinguish the order of the phase transition. Nevertheless, our results for the
FK model show, that it is a promising tool capable of extracting new features of well
known models that are overlooked by other, well established methods.
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4.4 Application of the machine learning algorithms to the biophysical
systems

4.4.1 Biology of ion channels

Ion channels are types of proteins located in the plasma membrane that are considered
tunnels that having the ability to selectively pass ions in response to a chemical or
mechanical signals [6, 149]. The study of ion channels is important with regard to
their role in cell pathophysiology leading to many critical illnesses and their potential
application as drug targets [150, 151]. Fig. 4.42 represents the basic activity of an ion
channel – after a short period of opening (conducting state), the ion channel enters a
closed state during which the passage of the ions is blocked.

The switching dynamics between the channel conformations: open (O) and closed
(C), called channel gating, is usually very complex and depends on many different
factors, including the interaction of the ion channel with other proteins (e.g. β–
complexes) and presence of additional stimuli such as natural flavonoids [152], toxins
(or other channel ligands).

The studies presented in the forthcoming Sections focus mainly on the analysis
of mitoBK channel dynamics. The mitoBK channel is large conductance voltage- and
calcium–activated potassium channel placed in the inner mitochondrial membrane [153,
154]. It is responsible for the mitochondrial potassium influx, regulates membrane
potential, mitochondrial respiration, and matrix volume [154, 155]. It also contributes
to cytoprotection [156]. It can stimulated by membrane depolarization, the calcium
Ca+ ion concentration, protein–protein, protein–ligand or protein–lipid interactions or,
as we shall see later, the presence of natural flavonoids such as naringenin [152, 157].

Fig. 4.42 Illustration presenting a basic activity of an ion channel [6]. After a short period of
opening (conducting state), the ion channel enters a closed state during which the passage of the
ions is blocked.

The primary source of knowledge about ion channel activation is the data obtained
from the patch–clamp experiment [158]. It consists of placing a micropipette on a
small piece of membrane called a patch. Such a micropipette registers currents flowing
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through the fragments of the cellular membrane, yielding important information about
its gating and activation. From a mathematical point of view, such currents take the form
of time series (described in more detail in Sec. 3.9). They can be examined with various
statistical analysis methods, including machine learning algorithms. Such techniques
can detect single–molecule events [159] and recognize different genetic features of
ion channels [160]. They can also be considered, as we shall further see, good
classificators revealing different mechanisms driving ion channel gating and activation.
The development of new methods of ion channel analysis is important because they can
provide potentially crucial information about the channel’s conformational dynamics
without using cumbersome and computationally expensive MD (molecular dynamics)
simulations.

In the forthcoming Sections, we present applications of different data mining
algorithms to the analysis of the activity of the mitoBK ion channel. We demonstrate
that they provide information about the ion channel activity, which can not be extracted
from classical methods of kinetic analysis.

4.4.2 Classification of mitoBK traces registered in different cell types

The channel proteins can be associated with different types of regulatory β (1–4) and
γ (1–4) subunits [161, 162]. They are exhibited in the tissue–specific manner. As a
part of this study, we aim to find single–channel activity patterns coming from three
different cell types: human endothelial cell line (EA.hy926), primary human dermal
fibroblasts cell line (HDFa), and embryonic rat hippocampal neurons. Examples of
recordings obtained for all three cell types at different values of micropipette potentials
acquired by our collaborators [163] ranging from Umin = −60 mV to Umax = 60 mV
are presented in Fig. 4.43.

The recordings represent various levels of mitoBK ion channel activation
increasing non–linearly with an increase of U as presented in Fig. 4.44. As can be
noticed, the mean open state probabilities Pop discriminate to some extent between
recordings corresponding to different cellular lines for intermediate potentials U . They
become, however, indistinguishable for U = 60 mV. Moreover, the Pop’s do not,
provide any information on the variability of the recorded signals on short time scales.
More specifically, from pop, one cannot find the differences in local conformational
dynamics that occur in various cellular lines.

To overcome this problem, we create a simple algorithm based on time series
analysis in conjunction with machine learning methods. Its main objective is to answer
the following questions: ’Are the signals corresponding to different cellular lines
characteristic enough to be distinguishable even at the short–time scales? In particular,
can they be identified even in the case when the mean level of ion channel’s activation
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Fig. 4.43 A set of recordings coming from the patch-clamp experiment performed on different
cell types: endothelium, fibroblast and hippocampus at different values of pipette potentials U .
The value of 20 pA denotes the amplitude of the obtained ion current. The symbols C and O
stand for the closed and open states of the ion channel, respectively.

is approximately the same?’

Our analysis consists of several basic steps:

1. Data–preprocessing stage,

2. Removal of outlier recordings with the use of an autoencoder neural network,

3. Data division into training and testing datasets,

4. Classification of samples with the KNN algorithm.
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Fig. 4.44 The mean open state probability Pop in function of micropipette potential U for three
different cellular lines.

The data consists of mitoBK current’s recordings obtained from the patch–clamp
experiment. For analysis, we use traces corresponding to different cellular lines and
membrane potentials Um. Each recording consists of 25 000 samples obtained at the
sampling frequency fs = 10 kHz. They are then divided into a set of overlapping
subsequences of length l = 1000 with a stride r = 200 (Sec. 3.9). Such created
subseries are sufficiently long to grasp the characteristic features of the ion channel
activity. They are then reduced from l = 1000 to l′ = 200 with the PAA method
(Sec. 3.9.1) illustrated in Fig. 4.45b). This step is necessary to prevent overfitting
during the evaluation of a machine learning algorithm. Note that the application of this
technique does not change signal’s trend preserving information about the ion channel
activity and its conformational dynamics.

The next step of our analysis involves removal of outlier recordings obtained
at the same external conditions (membrane potential Um and cellular line). For this
purpose, we apply a simply, fully–connected autoencoder neural network (see Sec. 3.7)
which encodes raw input signal into 2–dimensional latent space. Exemplary results
of this transformation are illustrated in the upper panel of Fig. 4.45a), where different
subsequences of length l′ = 200 obtained from the same recording are marked with the
same colors. In the presented example, one can see that one recording clearly stands
out from the rest. It is then treated as an outlier and discarded from further analysis.

Subsequently, we split remaining recordings into the training and testing datasets.
We apply the following train-test split strategy. At the fixed value of potential Um we
choose one recording of each cell type. Then subsequences created out of these three
recordings fall into the testing dataset. The subseries corresponding to the remaining
traces make the training dataset. We repeat this procedure until all possibilities of such
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Fig. 4.45 Elements of the preprocessing stage and the outlier removal. The upper (a))
figure illustrates the representation of time series data points after reduction performed by an
autoencoder neural network. One of the clusters stands out from the rest – it is treated as an
outlier and discarded from further analysis. The lower figure (b)) represents the PAA method.
The solid blue line represents a raw signal. The orange dots mark the signals obtained after the
PAA transformation.

Ultimately, subsequences are fed into a KNN (Sect. 3.9.2). The performance
of such a trained algorithm is presented in Tab. 4.2. For comparison, we show the
classification accuracies obtained in two cases: with application of the autoencoder
anomaly detection technique (AD) in the preprocessing stage and without. As expected,
we observe a significant improvement in the results when outliers are removed prior to
training. The Tab. 4.2 shows also that the worst results are obtained for Um = −20 mV.
We suspect that this moderate value of the pipette potential has a too small impact
on a channel pore. As a consequence, the energetic differences between the ion
channel conformations corresponding to different cellular lines are, in some cases,
indistinguishable for the KNN.

Additionally, to make our studies more profound, we illustrate the samples in
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Potential Um Acc. Without AD Acc. With AD

60 mV 96.6 % 96.6 %

40 mV 72.9 % 99.5 %

20 mV 75.5 % 96.5 %

−20 mV 84.3 % 84.3%

−40 mV 59.9 % 95.9 %

−60 mV 77 % 100 %

Table 4.2 The classification accuracies of the mitoBK channel recordings corresponding to
different cellular lines. The compared samples are obtained at the fixed value of the membrane
potential Um applied during the patch–clamp experiment. The middle and last columns shows
the performances without prior use of the anomaly detection techniques (AD) and after dispose
of outliers, respectively.

the 2–dimensional latent space of an autoencoder (Fig. 4.46). In almost all cases,
we observe a clear separation between clusters corresponding to samples representing
different cellular lines. This separation varies for different values of Um. For
Um = −20 mV the clusters representing the hippocampus and the fibroblast cells
clearly overlap, making the ML classification much more difficult. It is compatible
with the results presented in Tab. 4.2 - the lowest value of accuracy is obtained for
Um = −20 mV. To quantitatively compare the level of separability between recordings
corresponding to different cellular lines, we apply the k–Means (k = 3) algorithm (see
Sect. 3.4). It identifies the center’s positions of the emerging clusters ci. Then we treat
the pairwise Euclidean distances (presented in Tab. 4.3) between the clusters’ centers
cij as a measure of data separability. For the sake of clarity, the presented data are
normalized with a reference to the smallest distance between the clusters, which is set
to 1 for a fixed pipette potential Um.

In general, for most potentials (excluding 40 mV) we observe the greatest
distances between data points representing the hippocampal and endothelial cells.
Furthermore, the hippocampal and fibroblast cellular lines seem to be closer to each
other compared to the endothelial line, which appears to be more distant from both the
hippocampus and the fibroblasts. This result is not so surprising taking into account
the mean open state probability functions presented in Fig. 4.44 which reflect similar
dependencies.

In summary, this simple analysis of mitoBK channel ion currents reveals
qualitative differences in the ion channel activities corresponding to different cellular
lines at the fixed value of the pipette potential. It suggests that the mechanism governing
the mitoBK ion channel gating depends on the cell type. The fact that disparities in the
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Endothelium Fibroblast Hippocampus

Fig. 4.46 The visualization of time series samples, obtained at different values of micropipette
potential, presented in the 2–dimensional latent space of the applied autoencoder. Different
colors of data points correspond to subsuquences representing 3 distinct cellular lines.

signal’s characteristics occur even at the same level of activation (which happens, for
instance, for Um = 60 mV) further strengthens our hypothesis.

4.4.3 Study of the impact of naringenin on the mitoBK channel activity

In general, mitoBK channels are modulated by two basic stimuli: membrane
depolarization and Ca+ ions [164]. However, there exist many other modulators of
the mitoBK channels such as a mechanical strain [165], channel openers NS1619,
NS11021, CGS7181, CGS7184 paxilline (PAX), charybdotoxin (ChTx), iberiotoxin
(IbTx), 12 4-aminopyridine (4-AP) or tetra-ethyl ammonium (TEA) [166, 167, 168,
169]. Unfortunately, the majority of them exhibit broad off-target effects, including
their cytotoxicity [170]. Therefore, it is extremely important to find other sources of
modulation. One of the possible choices are flavonoids that are cost-effective, non-toxic
and easily available [152]. Among them, the naringenin (Nar) due to its antioxidant,
cytoprotective and anti–inflammatory properties, seems to be a perfect mitoBK channel
modulator. Many studies confirmed that its presence significantly increases the level of
mitoBK channel activation [167, 171, 172].
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Potential Um Dist FH Dist FE Dist HE

60 mV 1 1, 92 2, 46

40 mV 1, 72 1, 99 1

20 mV 1, 06 1 1, 74

−20 mV 1 1, 73 2, 37

−40 mV 1 1, 64 1, 87

−60 mV 1 1, 97 2, 42

Table 4.3 The normalized distances between the clusters representing different cellular lines for
various potentials Um normalized to the smallest distance. FH, FE, HE represent the distances
between centroids of the ’fibroblast’ and ’hippocampus’, ’fibroblast’ and ’endothelium’,
’hippocampus’ and ’endothelium’ datapoints, respectively.

The purpose of our study is to find out, if apart from the increase in the probability
of opening of the channel Pop, the addition of the naringenin shapes locally patch–
clamp recordings. To this end, we analyze the traces obtained at different values of
pipette potential U and naringenin concentration [Nar]. Some representative sequences
obtained at different external conditions are presented in Fig. 4.47.

At the beginning, we categorize the data into three sets characterized by
approximately the same value of Pops. They are presented in Tab. 4.4 where they
are marked in three different colors. It is important to note that although recordings
assigned to the same group exhibit the same mean level of mitoBK channel activation,
they are obtained at various values of naringenin concentration [Nar] and micropipette
potentials Um.

0 µM 1 µM 3 µM 10 µM

20 mV 0.59± 0.04 0.60± 0.03 0.65± 0.02 0.71± 0.02

40 mV 0.56± 0.03 0.58± 0.02 0.63± 0.02 0.66± 0.02

60 mV 0.53± 0.05 0.53± 0.02 0.58± 0.05 0.60± 0.02

Table 4.4 The mean open state probabilities of the mitoBK channel obtained at different values
of pipette potentials Um ∈ {20 mV, 40 mV, 60 mV} and the naringenin concentrations
[Nar] ∈ {0 µM, 1 µM, 3 µM, 10 µM }. The cells representing the groups of recordings
compared by ML algorithms are marked with the same colors.

Subsequently, we apply a ML algorithm separately for each of the highlighted
groups of recordings. We discover, however, that raw patch–clamp recordings return
poor classification accuracies. For this reason, prior to training, we transform them into
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Fig. 4.47 The examples of normalized patch–clamp recordings obtained from patch–clamp
experiment for different values of naringenin concentration [Nar] and pipette potentials U .
The letters O and C indicate the open and closed states, respectively.

the dwell–time series. They are defined as a normalized series of subsequent durations
of open (O) and closed (C) states (Fig. 4.48). The construction of a dwell–series requires
however the determination of a threshold current value (TC) discriminating between
conducting and non–conducting states. It can be achieved using the procedure described
in more detail in [173].

The reason behind the unsatisfactory results obtained from the analysis of the
raw experimental data is twofold. First of all, dwell–time sequences are much shorter
than original raw samples. It entails the condensation of the information about the ion
channel activity - our data set consists of shorter time series containing more knowledge
about switching dynamics, which turns out to be crucial for the right recordings’
classification. Moreover, such a constructed data set does not exhibit spontaneous
fluctuations, which can be a consequence of a highly complex alternation pattern
between possible protein conformations. Such fluctuations have no impact on the
general trend of signals, but can substantially impede the classification performed by
an ML algorithm.

To classify the sequences of dwell-time series, we decided to apply, on the first try,
a simple KNN algorithm with Euclidean distance metrics. This choice is motivated by
its effectiveness in ion channel classification corresponding to different cellular lines, as
shown in the previous Section. Apart from that, it is fast and does not require extensive
parameter tuning (the only free parameter is the number of neighbors).

However, before feeding dwell-time series into the ML algorithm, it is necessary
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Fig. 4.48 An example of dwell-time series of length 50 representing normalized values of
duration of subsequent open (O) and closed (C) ion channel states.

to divide them into a set of smaller subseries. We discover that an optimal length of
a single dwell-time subsequence is N = 50. It turns out to be the best compromise
between the dimension of the training data set and the number of samples (the larger
the lengths of individual samples, the smaller their number). We apply no overlap
between consecutive subseries to make the samples more ’independent’. Additionally,
to avoid the class imbalance problem [174], the number of data points for each of the
groups analyzed is set the same. It requires shortening some traces to the same length.
In such a manner, for each of the 3 classes of recordings, we obtain approximately
100 samples (dwell–time subsequences). Subsequently, they are globally (separately
for each class) normalized into the range [0, 1]. The illustration of general steps taken
during preprocessing–stage is presented in Fig. 4.49.

After applying the KNN method to such a created data set, we find poor prediction
accuracies. Although the results obtained suggest that the algorithm classifies the
recordings in a non–random manner (we obtain Acc ≈ 60% for binary classification
problem and Acc ≈ 50% when algorithms have to deal with three categories), there
is much room for further improvement. To increase the classification performances,
we make a second attempt with the shapelet method described in Subsec. 3.9.3 which,
contrary to the KNN gives much more insight into the data by analyzing it locally rather
than globally. The comparison of these two algorithms for three groups of recordings
elucidated in Tab.4.4, is presented in Tab.4.5.

Indeed, we discover that the shapelet method deals better with the classification
of dwell-time series than the KNN. Taking into account that the compared groups
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Fig. 4.49 Illustration of the data–preprocessing stage. Raw dwell–time recordings
corresponding to different classes are, in the first step, divided into a set of smaller subseries.
All subseries assigned to the same category are then globally normalized into the range [0, 1]
with the MinMax Scaler. The ultimate training (and testing) data set is created by combining all
such prepared subsequences.

of recordings are characterized by the same values of mean open state probabilities
Pops (thus exhibiting the same global feature), this result should not be surprising.
However, although the shapelet method exhibits more discriminative power than the
KNN technique, the ratio of misclassified samples is still significant. One can interpret
that in terms of a switching mechanism between conducting and non–conducting states
common to both modulators.

Another interesting question that arises in the context of conducted studies
concerns the significance of the impact of two basic external stimuli on mitoBK channel
activation. To investigate this problem, we perform the ML classification for the dwell–
time series corresponding to two different naringenin concentrations [Nar] and fixed
pipette potential Um, and vice versa. The results obtained both with the KNN and
shapelet methods are shown in Tab. 4.6.

The first group of recordings is characterized by a fixed membrane potential
(Um = 60 mV) in the absence of naringenin (0 µM) and in its presence (10 µM).
As one can see, the KNN algorithm deals better with discrimination of this group of
recordings. This result may suggest that the presence of naringenin shapes primarily
large-scale features of the channel gating. The second group of recordings corresponds
to a fixed naringenin concentration ([Nar]=10 µM) and different values of pipette
potentials Um = 60 mV and Um = 20 mV. In this case, the predictions of the shapelet
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Potential Um [Nar] Acc. KNN Acc. Shapelet

FIRST GROUP

60 mV 1 µM
62% 70%

20 mV 10 µM

SECOND GROUP

60 mV 3 µM
64% 71%

40 mV 10 µM

THIRD GROUP

60 mV 0 µM

49% 56%40 mV 1 µM

20 mV 3 µM

Table 4.5 The comparison of classification accuracies of the KNN and shapelet learning
methods presented for three different groups of patch–clamp recordings characterized by the
same mean open state probabilities.

method are more accurate. It is probably due to the fact that the membrane potential
has a greater impact on local shaping of the mitoBK activity than naringenin.

Furthermore, to make our analysis more insightful, we show in Figs.4.50 and 4.51
the shapelets obtained as a result of training the ML classificator on the groups of data
presented in Tab. 4.6. The shapelets of length Ns = 20 are imposed on parts of dwell-
time samples in their best–matching locations. As one can see in Fig. 4.50, the shapelets
which to the largest extent discriminate recordings corresponding to the extreme values
of naringenin concentrations (0 µM and 10 µM), represent the extracts of dwell-
time sequences characterized by large internal variability. In contrast, shapelets that
separate data representing different levels of voltage–activation, seem to describe rapid
switchings to long–lasting states as shown in Fig.4.51.

The separation between dwell–time subsequences representing various classes can
be visualized in a two–dimensional space S2. As described in Sect. 3.9.3, to perform
the transformation of dwell–time samples to S2, it is necessary to choose two most
representative shapelets s1 and s2 and calculate their distances to all samples in the
data set k. In this way, two feature vectors d(s1,k) and d(s2,k) become coordinates
of the dwell-time samples in this new space. We perform this analysis for the two
groups of recordings enumerated in Tab. 4.6. The chosen shapelets s1 and s2 used
in the transformation, which correspond to dwell–time series differing by the values
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Potential Um [Nar] Acc. KNN Acc. Shapelet

DIFFERENT NARINGENIN CONCENTRATIONS

60 mV 10 µM
76% 62%

60 mV 0 µM

DIFFERENT VALUES OF PIPETTE POTENTIALS

60 mV 10 µM
66% 82%

20 mV 10 µM

Table 4.6 The accuracies of the KNN and shapelet learning methods presented for two groups
of recordings. The first one is characterized by the same value of pipette potential Um = 60 mV
and different values of naringenin concentrations [Nar] = 0 µM and [Nar] = 10 µM. The
second group of recordings corresponds to the same value of naringenin concentration [Nar] =
10 µM and different values of pipette potentials Um = 60 mV and Um = 20 mV.
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Fig. 4.50 Examples of dwell time series samples (of length N = 50) with shapelets (of length
Ns = 20) imposed on the signals in their best–matching locations. The compared groups of
recordings correspond to the same value of pipette potential Um = 60 mV and different values
of naringenin concentration [Nar] = 0 µM (upper figure) and [Nar] = 10 µM (lower figure).
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Fig. 4.51 Examples of samples of dwell time series (of length N = 50 with) with shapelets
(of length Ns = 20) imposed on the signals in their best–matching locations.. The compared
groups of recordings correspond to the same value of naringenin concentration [Nar] = 10 µM
and different values of pipette potentials Um = 20 mV (upper figure) and Um = 60 mV (lower
figure).

Fig. 4.52 The shapelet-transform representation of the input data describing mitoBK activity. On
the left panel, the presented points correspond to data obtained at the fixed value of membrane
voltage Um = 60 mV and different values of naringenin concentrations: [Nar] = 0 µM (purple
dots) and [Nar] = 10 µM (yellow dots). On the right panel, points represents the dwell-time
samples obtained at the fixed naringenin concentration [Nar] = 10 µM and different values of
membrane potentials: Um = 20 mV (purple dots) and Um = 60 mV (yellow dots).

of applied voltage and naringenin concentration are presented in Figs. 4.51 and 4.50,
respectively. New representations of the analyzed samples are illustrated in Fig. 4.52.
One can observe the large overlapping of points corresponding to the set of recordings
obtained at different naringenin concentrations. In contrast, the data points representing
various levels of membrane potential are more separated. These findings coincide with
the classification presented in Tab. 4.6 and suggest that the membrane potential has a
greater impact on the dynamics of the local mitoBK channel.
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4.4.4 Summary

The results of the studies presented in the previous two sections are of great importance
for a more profound understanding of the mitoBK channel’s dynamics. We discover
that the activation of these ion channels depends on many factors, including the type
of cell and the presence of additional external modulators such as naringenin. The
underlying differences cannot always be detected by classical methods. Some of
them can be, however, identified by the machine learning algorithms such as KNN
or shapelet methods. We believe that the novel, alternative methods of the patch–clamp
recordings’ analysis introduced in the presented research will significantly contribute
to the understanding of the ion channel switching dynamics and discovery of new
modulation sources free of the off–targets effects.
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CHAPTER 5

Conclusions

The studies presented in this Ph.D. thesis constitute the summary of the research
conducted in 2016–2022. They focus on the possible applications of machine learning
methods which, due to the rapid development of new technologies, have experienced
a renaissance. The studies are mainly concerned with the physics of phase transitions.
We dedicate it to three Sections containing:

• the neural network’s estimation of the critical temperature of the BKT phase
transition,

• determination of the order parameter and the nature of phase transitions with the
simple unsupervised learning methods,

• discrimination between first–order and second–order phase transitions with the
learning by confusion scheme.

In the first Section, we find out that the BKT is difficult to analyze with regard
to its topological character and continuous degrees of freedom. For some models, to
obtain a sufficiently precise estimation of the critical temperature TBKT , it is necessary
to train the neural network on the MC configurations corresponding to temperatures
lying near the transition point. It is due to the fact that the configurations obtained at
extreme temperatures (T � TC) and (T � TC) are much more different from those
generated for T ≈ TC .

In the next Section, we attempt to estimate the order parameter with PCA and
K–means techniques. For the three models under study, we find that the distance
between clusters obtained after the PCA transformation (and representing the ground
states of the given model) correlates well with the order parameter. In addition, we have
discovered that the evolution of the 2–dimensional PCA representation of the raw MC
configurations with the temperature differs among two types of phase transitions, which
can hint at their nature.

In the last Section concerning the physics of phase transition, we analyze the shape
of the performance curve obtained with the learning by confusion scheme (LBC) for
the same models analyzed already in the previous Section. We conclude that although
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LBC deals quite well with the continuous phase transition and is able to determine the
critical point precisely, it sometimes fails to correctly identify the moment of a phase
transition in the case of discontinuous phase transitions. Such a situation occurs in
the Falicov–Kimball model in the weak interaction regime. The performance function
forms a plateau spreading over many temperatures in this case. We associate this
uncommon behavior with the rate at which the defects of MC configurations grow with
the temperature. We discover that their form and ways of proliferation have a decisive
impact on the performance curve. We find that although the LBC scheme can not be
used to identify the order of the phase transition, it can serve as a tool allowing us to
study the finite–size effects of the MC configurations varying between different models
of the condensed matter physics.

The remaining part of the thesis presents the application of ML methods to the
analysis of signals representing the activity of ion channels. We show that the simple
K–Means algorithm with Euclidean distance metrics is able to discriminate between
signals corresponding to different cellular lines. Furthermore, we find out that the
application of the shapelet method can reveal a stimuli of an ion channel based solely
on the shape of the signal.

In conclusion, the dissertation has shown that the methods of artificial intelligence
have great potential to become new tools for analyzing the physics of different systems.
The main challenge with applying ML methods on a bigger scale in science is the
need for their clear interpretability. Therefore, the classical methods of analysis still
lead the way. This situation may change in the forthcoming years, during which new
ML techniques will surely be developed. The first steps toward the interpretation of
the ’black box’ have already been taken [175, 176]. They will probably significantly
contribute to new discoveries in the field of science.

Annotations

This Ph.D. thesis was based on four articles [70, 163, 177, 178]. Ref. [178] has
the form of preprint and is currently under review in Phys.Rev.E. It is important to note
that during Ph.D. studies, one also published other articles going beyond the topic of
this dissertation. They include studies concerning:

• detection of characteristic points in the impedance signal (ICG) monitoring the
heart activity [179, 180],

• new discrete symmetries in the extended Standard Model [181, 182, 183, 184],

• decoherence in the open quantum systems [185, 186, 187, 188]

and one review [152] describing impact of the flavonoids on the potassium ion
channel activation.
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[192] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal

of machine learning research, 12(Oct):2825–2830, 2011.

116

145:1763253179



[193] Jin Huang and C.X. Ling. Using auc and accuracy in evaluating learning
algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3):299–
310, 2005.

117

146:3625326214



118

147:9903183224



LIST OF PUBLICATIONS

Publications being the basis of the dissertation

1. Richter–Laskowska, M., Trybek, P., Bednarczyk P. and Wawrzkiewicz–

Jałowiecka A. 2022. To what extent naringenin binding and membrane

depolarization shape mitoBK channel gating – a machine learning approach.

PLOS Computational Biology, 18(7), e1010315.

2. Richter–Laskowska, M., Trybek, P., Bednarczyk P. and Wawrzkiewicz–

Jałowiecka A. 2021. Application of Machine-Learning Methods to Recognize

mitoBK Channels from Different Cell Types Based on the Experimental Patch-

Clamp Results. International Journal of Molecular Sciences, 22(840)

3. Richter–Laskowska M., Khan H., Trivedi N. and Maśka M. 2018. A machine
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Appendix A

The estimation of the critical temperature with the neural network
– computational details

Here, we present details regarding the neural network computations used to estimate the
critical temperature in the Berezinskii–Kosterlitz–Thouless phase transition described
in Sec. 4.

For all models under study, the dimension of generated MC configurations is set to
16× 16. Each MC sample is subsequently transformed into a vector of sine and cosine
functions (Fig. A.1). Therefore, the input of our simple feed–forward neural network
is of dimension 2 × 16 × 16 = 512. It is then followed by six fully–connected layers.
The first five of them, composed of 512, 192, 64, 16, and 16 neurons, are activated
with the rectified linear unit (ReLU) activation function. The last neuron activated by
the sigmoid function returns a value between 0 and 1. It ensures a straightforward
interpretation of the output as the probability of a configuration belonging to the high–
temperature phase.

YES

NO

Fig. A.1 The scheme of preprocessing stage performed before feeding the raw spin
configurations into a neural network. The configurations represented by the angles θi are
transformed to the vector of trigonometric functions and such are analyzed by an algorithm
deciding whether given configuration belongs to the high–temperature phase (YES) or to the
low–temperature phase (NO).

The neural network is trained with the ADAM (A method of stochastic
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weights 1 weights 2 weights 3

weights 4

0.4

0.2

0.0

0.2

0.4

0.6

Fig. A.2 Illustration of weights learned during the process of training. The white, blue, and red
colors correspond to zero, negative and positive weights, respectively. ’weights 1’ connect the
first hidden layer of dimension 512 with the next one of dimension 256. Similarly, ’weights 2’
links the layer of size 256 to that of dimension 64, etc.

optimization) algorithm [61], which aims to minimize the loss function of the form:

L = −
∑
i

[yi log ŷi + (1− yi) log(1− ŷi)] + λ
∑
i

w2
i , (A.1)

where yi denote the data labels and ŷi are predictions of a neural network. The first
part of Eq. A.1 stands simply for the binary cross–entropy function, while the second
part of L is the L2 regularization term [189], where wi are the weights used during
training. λ stands for the regularization constant, which must be tuned with trial and
error. In our case, the addition of this term is quite beneficial – it significantly improves
the predictions’ accuracy, makes the results more stable, and reduces overfitting.

Note that such a neural network structure gives us a good balance between the
number of training epochs and the time needed for the algorithm’s convergence. Despite
a large number of neurons, most of them are activated during the training, contributing
to the final output. Their exemplary values are shown in Fig. A.2.

All computations were performed with use of the Python language supported by
the interface for the artificial neural network called Keras [190].
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Appendix B

Calculation of M(T ′C) quantity for the discontinuous phase
transition

In this appendix, we present the calculations leading to the expression for the quantity
M(T ′C) =

∫ Tmax

Tmin
f(T ′C , T )dT obtained in Eq. (4.19). T1 and T2 indicate the boundary

temperatures between which two distinct phases coexist. TC and T ′C correspond to the
actual and assumed critical temperatures, respectively.

This analysis is performed for several cases:

a) T′C = TC

a)

b)

c)

Fig. B.1 The proportion of mislabeled data α as the function of temperature assuming T ′C = TC .

In this case, the integral M(T ′C) can be calculated as the sum of two areas
highlighted in Fig. B.3. Since the critical temperature TC lies right in the middle
between temperatures T1 and T2, these areas are identical. It is, therefore,
sufficient to calculate one of them and multiply by two the overall result at the
end. Denoting by T2 − T1 = ∆ we obtain:

M(T ′C) = (TC − T1) · α(T ′C)

2
=

∆

2
· 1

2
=

1

4
∆,

where α(T ′C) was calculated from Eq. (4.18).

b) T1 < T′C < TC

Similarly to the previous case, the quantity M(T ′C) can be calculated as the sum
of two areas. However, this time they are not the same and must be evaluated
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a)

b)

c)
Fig. B.2 The proportion of mislabeled data α as the function of temperature assuming T1 <
T ′C < TC .

separately. The value of M(T ′C) then reads:

M(T ′C) =
1

2
[1− α(T ′C)] (T ′C − T1) +

1

2
α(T ′C)(T2 − T ′C) =

1

2
[1− α(T ′C)]

(
1

2
∆− τ

)
+

1

2
α(T ′C)

(
1

2
∆ + τ

)
=

1

4
∆ + α(T ′C)τ − 1

2
τ,

(B.1)

where T ′C − TC = τ . Making use of Eq. (4.18) and assuming T2 = TC + 1
2
∆ we

get the following expression for α(T ′C):

α(T ′C) =
T2 − T ′C
T2 − T1

=
T2 − T ′C

∆
=
TC + 1

2
∆− T ′C
∆

=
τ + 1

2
∆

∆
. (B.2)

By inserting Eq. (B.2) into Eq. (B.1) we obtain:

M(T ′C) =
1

4
∆ +

τ + 1
2
∆

∆
τ − 1

2
τ =

1

4
∆ +

τ 2

2∆
=

1

4
∆ +

1

∆
(TC − T ′C)2, (B.3)

in agreement with Eq. (4.19) for |T ′C − TC | < 1
2
∆.

c) T′C < T1

a)

b)

c)

Fig. B.3 The proportion of mislabeled data α as the function of temperature assuming T ′C < T1.

In this case the quantity M(T ′C) can be calculated as the area of trapezium:

M(T ′C) =
T2 − T ′C + T1 − T ′C

2
=
T2 + T1

2
− T ′C = TC − T ′C . (B.4)
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Appendix C

Computational details – a learning by confusion approach to
characterize phase transitions

C.1 Monte Carlo simulations

The Monte Carlo configurations are generated using the following:

1. Classical Metropolis algorithm in the case of the BC model,

2. Wolff cluster method [47] in the case of the qP model,

3. Modified version of the classical Metropolis algorithm for the FK model.

Since the first two methods are standard and well described in the literature, we
will focus only on the case of the FK model.

The simulation of the FK model is carried out in analogy to the simulation
performed for an Ising model characterized by the following partition function Z:

Z =
∑
i

e−βEi , (C.1)

where the sum is taken over all possible states of the system. Since the number of
all possible configurations is enormous, one cannot evaluate the partition function
explicitly. One method to overcome this problem is to generate a Markov chain of states.
In the Ising model, the proposition of a new state f is generated from the previous one
i by a flip of the spin on a randomly chosen lattice site in the initial configuration. We
then consider the energy difference ∆E between i and f :

∆E = Ef − Ei. (C.2)

The new state is accepted with the transition probability :

Pif = e−β∆E, (C.3)

where β = 1
kBT

.
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The FK model involves, apart from classical also, itinerant quantum fermions. It
implies that the above–described procedure cannot be straightforwardly applied to this
model. The partition function is in this case more complicated and reads as:

Z =
∑
C

Tree
−β[H(C)−µN ], (C.4)

where C denotes all possible configurations, the trace is taken over the fermionic
degrees of freedom, β = 1

kBT
, µ is the chemical potential, andN denotes the occupation

number. We can simplify the form of Eq. (C.4) by rewriting it as:

Z =
∑
C

Tree
−β[H(C)−µN ] =

∑
C

e−βF =
∑
C

∑
i

e−βEi , (C.5)

where F stands for the free energy, while Ei denote all possible system’s energies.
Denoting by εi eigenenergies of the system and by M the overall number of possible
energy levels occupied by N particles, the energies Ei can be expressed as:

Ei =
M∑
i=1

ni(εi − µ), (C.6)

where ni is the number of particles corresponding to the eigenenergy εi. Then Eq. (C.5)
transforms to:

Z =
∑
C

∑
ni

e−β
∑M

i=1 ni(εi−µ) =
∑
C

M∏
i=1

∑
ni

e−βni(εi−µ). (C.7)

Making use of the Pauli exclusion principle (ni ∈ {0, 1}), we present the Eq. (C.7) in
the form:

Z =
∑
C

M∏
i=1

[
1 + e−β(εi−µ)

]
. (C.8)

Then, making use of Eq. (C.8) it is straightforward to show that:

F = − 1

β

M∑
i=1

ln
[
1 + e−β(εi−µ)

]
. (C.9)

Having form of the free energy we can evaluate the partition function Z =∑
C e
−βF which is similar to that presented for the Ising model (Eq. C.3). Then a new

state f in the FK system proposed by a change in the position of one ion in the preceding
configuration i is accepted with probability Pif = e−βF . The scheme illustrating this
technique is illustrated in Fig. C.1.

The main advantage of this method is that it is simple and easy to implement.
Moreover, it can be generalized also for other models involving classical and quantum
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Fig. C.1 The scheme of a modified version of the Metropolis algorithm applied to systems with
classical and fermionic degrees of freedom presented in the example of the Falicov–Kimball
model. We start from the random configuration of ions and subsequently change the position
of one arbitrarily selected ion in the lattice. The Hamiltonian is diagonalized afterward. This
step allows calculating the free energy difference ∆F between the previous and new states. If
∆F ≤ 0, the new configuration is accepted and added to the Markov chain. If ∆F > 0 one
calculates the probability e−β∆F and compare it with a random number r ∈ [0, 1]. If r >= p,
the proposed configuration is accepted. Otherwise, we reject the configuration, propose a new
state, and repeat the whole procedure.

degrees of freedom. One of the examples of such a system is the fermion–phase model
introduced in Sec. 2.5. Here, the main difference in the simulations (apart from another
form of the Hamiltonian) lies in the way a new state is proposed – instead of movement
of an ion, we change a spin direction on one lattice site.

Despite its assets, the method generates slow MC simulations and requires
enormous computational resources. It is due to the necessity of diagonalization of the
Hamiltonian in each MC step. Therefore, the lattice size L for which we can perform
simulations in a reasonable amount of time is strictly limited.
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C.2 Training of a neural network

The Monte Carlo configurations corresponding to all three microscopic models studied
in Sec. 4.3 (i.e., FK, qP and BC) allow only discrete values on their sites (either spin or
occupation number). It enables the preprocessing of the input dataset in such a way as
to obtain a more general representation of the configurations associated with different
models.

Fig. C.2 The transformation of raw input spin configurations. Each MC configuration of size
L × L is transformed to q (number of possible spin orientations) new configurations in a way
illustrated in the above picture.

Within the proposed scheme, the raw FK configurations are fed directly into the
first layer of a neural network. The qP and BC Monte Carlo samples are modified in the
way depicted in Fig. C.2 – every input configuration of dimension L×L is transformed
to n configurations of the same size. The number n corresponds to q in the case of qP
model and is always equal to 3 for the BC model (there are three possible values of
spin: −1, 0, 1). Note that such a transformation extends the number of input channels
in a neural network.

The neural network used in the numerical study of the LBC scheme (Sec.4.3) is
composed of one convolutional layer with 64 filters of size 2 × 2. It is followed by
the max pool layer, which reduces twice the dimensionality of feature maps obtained
from convolution. The neurons are then flattened and connected with a dense layer. It
is subsequently followed by the sigmoid function σ(x). Both convolutional and first
fully–connected layers are activated with the ReLU activation function.

We train the neural network with the Adam optimization algorithm [61] with a
learning rate η = 0.001. Additionally, to avoid the overfitting problem, we apply to all
layers L2 regularization term [191] along with the early–stopping method [189]. The
chosen batch size is set to 256. This choice allows for speed computations that do not
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conv
2 × 2

max
pool
2 × 2 flatten

layer
dense

16
dense

1

convolutional + ReLU max pooling

sigmoid
fully 
connected + ReLU

16 × 16 × 64
8 × 8 × 64

1 × 4096 1 × 16 1 × 1

Fig. C.3 The architecture of a neural network used in the numerical study of the LBC scheme.
It consists of one convolutional layer followed by the two–dimensional max–pooling layer and
two fully–connected layers at the end. The convolutional layer and the first fully connected
layer are activated with the ReLU activation function. The last layer is activated by the sigmoid.

excessively overload the GPU.

For every model, the training is performed on configurations corresponding to
100 consecutive temperatures. For each temperature, we generate 10000 statistically
independent states with Monte Carlo (MC) simulations. Such obtained data is then
split into training and testing datasets in proportion 80% and 20%, respectively.

All neural network computations and some data prepossessing steps were
performed with the use of Python modules: Keras [190] and Scikit-Learn [192].

C.3 Justification of the usage of the AUC–ROC metrics

In the proposed variant of the LBC scheme, we evaluate the NN performance with
the AUC–ROC metrics instead of the more popular accuracy. This step requires some
justification. The method was originally designed to find the critical value of the
parameter that separates two distinct phases [110]. Here, the motivation for applying
the LBC scheme to our data is slightly different – we aim to determine the character
of a phase transition. For this reason, our predictions should be more accurate. They
should also contain information about the mean values of the outputs obtained from the
last layer of a neural network and its distribution. Moreover, during the evaluation of
the LBC scheme, we need to deal with the imbalanced dataset. Based on the objective
criteria of statistical consistency and discriminancy, it has been proven that the AUC–
ROC is better suited as a performance metric in such a case [193].

The power of AUC–ROC metrics can be illustrated in the following example. Let
us assume that we have to deal with the binary classification problem, i.e., we need
to find a model which can discriminate between two classes. Let us then say that two
samples in our dataset are classified positively, but the output of a neural network for
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one sample indicates the value 0.53, while for the second one, 0.9. It is clear that it is
much easier for an algorithm to classify the second sample. However, this information
is not provided in the accuracy.

Regarding the research problem presented in Sec. 4.3, usage of the AUC–
ROC metrics allows one to grasp significant differences between continuous and
discontinuous phase transitions. Such discrepancies are illustrated in Figs. C.4 and
C.5 on the example of the FK model.

As one can see, in the case of discontinuous phase transition (Fig. C.4), the output
values are perfectly separated for T ′C < TC and T ′C ≈ TC . When T ′C > TC , we observe
that the distribution of outputs is more flattened for the high–temperature phase. The
situation is quite different for the continuous phase transition (Fig. C.5), for which the
distribution is similar in all three cases.
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Fig. C.4 The neural network output’s distributions obtained as a result of the evaluation of the
LBC scheme for three different values of T ′C : T ′C < TC , T ′C ≈ TC , T ′C > TC in the case of
discontinuous phase transition.
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Fig. C.5 The neural network output’s distributions obtained as a result of the evaluation of the
LBC scheme for three different values of T ′C : T ′C < TC , T ′C ≈ TC , T ′C > TC in the case of
continuous phase transition.
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Appendix D

Finite–size scaling of the LBC scheme for the FK model

The studies presented in Sec. 4.3 apply only to one lattice size L = 16. To confirm that
the differences in the LBC curve obtained for models undergoing first– and second–
order phase transition, are maintained in the thermodynamic limit, we performed
additional simulations for L ∈ {10, 12, 20, 26}. The results are illustrated in Fig. D.1.
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Fig. D.1 The AUC–ROC curves versus temperature for the FK model U = 0.5 (a) and U = 4
(b) and different lattice sizes L.

TThe main observation coming from that picture is that the plateau emerging in the
AUC–ROC curve becomes wider with increasing lattice size (Fig. D.1a)). Moreover,
the maximum performance of the algorithm converges to one for larger systems
exhibiting a continuous phase transition (Fig. D.1b)). Finite–size effects are responsible
for such a behavior of the AUC–ROC function. When the size of a system increases,
peaks in specific heat and magnetic susceptibility become narrower, and so does the
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Fig. D.2 The concentration of defects C(T ) as the function of temperature for the FK model
simulated on different lattice sizes L and characterized by different potentials U = 0.5 (a) and
U = 4 (b).

region of critical fluctuations. As a result, the function of the defect concentration C(T )

becomes steeper around TC . Consequently, it is easier for the algorithm to discriminate
between configurations and the accuracy of neural network predictions increases.

To verify whether the change in the neural network performance that occurs for
larger systems is associated with the alternations in the C(T ) characteristics, we depict
Fig. D.2. One can see a clear correspondence of these results to those presented in
Fig. D.1. For U = 0.5 the region of the fastest growth in C(T ) is shifted towards lower
temperatures, leading to a widening of the plateau. For U = 4 C(T ) becomes steeper
around Tc, which increases the neural network performance.
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