

Wydział Nauk Ścisłych i Technicznych Instytut Chemii

mgr Magdalena Małecka

Wpływ modyfikacji strukturalnych liganda 2,2':6',2"-terpyridinowego na właściwości optyczne, elektrochemiczne i termiczne karbonylowych związków renu(I)

ROZPRAWA DOKTORSKA

Promotor prof. dr hab. Barbara Machura Promotor pomocniczy dr Agata Szłapa-Kula

Katowice 2023

Składam serdeczne podziękowania Pani prof. Barbarze Machurze za pomoc merytoryczną, cenne rady i uwagi oraz ogromne wsparcie i motywację przy tworzeniu tej pracy. Dziękuję za poświęcony mi czas i wyrozumiałość, a także za życzliwą atmosferę pracy.

> Dziękuję dr Agacie Szłapie-Kuli za nieocenione rady, wsparcie, ale także za miłą i serdeczną współpracę.

Pragnę serdecznie podziękować pracownikom Zespołu Fizykochemii Związków Metali Przejściowych za życzliwość oraz okazaną mi pomoc.

> Dziękuję Mamie, Siostrze, Mężowi i całej rodzinie za wiarę we mnie i okazane wsparcie podczas pisania tej pracy.

Pracę dedykuję mojemu Mężowi Patrykowi oraz Synowi Albertowi.

Badania przedstawione w niniejszej pracy zostały częściowo sfinansowane z środków NCN w ramach grantu **OPUS** DEC-2017/25/B/ST5/01611 "*Od nowych kompleksów renu(1) z ligandami triiminowymi do efektywniejszych materiałów foto i elektroluminescencyjnych*" oraz programu **PIK**- Programu Nowych Interdyscyplinarnych Elementów Kształcenia na studiach doktoranckich na kierunku chemia współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego POWR.03.02.00-00-I010/17.

Obliczenia teoretyczne zostały przeprowadzone we Wrocławskim Centrum Sieciowo-Superkomputerowym w ramach grantu obliczeniowego nr 18 (http://www.wcss.wroc.pl).

Spis treści

Streszczenie	6
Abstract	7
Wykaz skrótów	8
Wstęp	.10
Cel i zakres pracy	. 12
CZĘŚĆ TEORETYCZNA	14
1. Poszukiwanie wydajnej metody syntezy 2,2':6',2"-terpirydyny i jej pochodnych	. 14
2. Struktura i zdolności kompleksotwórcze 2.2':6',2"-terpirydyny	.17
3. Karbonylowe związki koordynacyjne renu(I) z 2.2':6',2"-terpirydyna – struktura i charakterystyka	. 20
4. Kształtowanie właściwości fizykochemicznych karbonylowych związków renu(I) poprzez modyfika	acje
strukturalne liganda 2,2':6',2"-terpirydynowego	. 32
4.1. Modyfikacje 2.2':6',2"-terpirydyny a parametry strukturalne karbonylowych zwiazków renu(I)	.36
4.2. Modyfikacje strukturalne $2.2':6'.2''$ -terpirydyny a położenia pasm rozciagających v _{CO} w widmach	IR
karbonylków renu(I)	.38
4.3. Modyfikacie strukturalne 2.2':6'.2"-terpirydyny a wartości potenciału jonizacji i powinowac	twa
elektronowego karbonylków renu(I)	. 42
4.4. Modyfikacje strukturalne 2,2':6',2"-terpirydyny a właściwości termiczne karbonylków renu(I)	49
4.5. Modyfikacie strukturalne 2.2':6'.2"-terpirydyny a właściwości absorpcyjne karbonylków renu(I)	. 51
4.6. Modyfikacie strukturalne 2.2':6'.2"-terpirydyny a właściwości emisyjne karbonylków renu(I)	. 57
5. Podejście bichromoforowe – efektywna strategia otrzymywania związków o długich czasach życia stan	ıów
wzbudzonych	.68
CZĘŚĆ DOŚWIADCZALNA	77
6. Stosowane odczynniki	.77
7. Metody syntezy	. 78
7.1. Synteza antraceno-2-karboaldehydu	. 78
7.2. Synteza pochodnych 2.2':6'.2''-terpirydyny	.78
7.3. Synteza pochodnych 2,6-di(pirazyn-2-ylo)pirydyny	80
7.4. Synteza związków koordynacyjnych renu(I) z pochodnymi 2,2':6',2"-terpirydy	yny
i 2,6-di(pirazyn-2-ylo)pirydyny	
8. Metody analizy i badań wolnych ligandów i związków koordynacyjnych renu(I)	86
8.1. Analiza elementarna	. 86
8.2. Spektroskopia NMR	. 86
8.3. Spektroskopia IR	. 86
8.4. Spektroskopia mas	86
8.5. Rentgenowska analiza strukturalna	. 87
8.6. Analiza termiczna	.87
8.7. Woltamperometria cykliczna (CV) i pulsowa woltamperometria różnicowa (DPV)	. 87
8.8. Spektroskopia absorpcyjna	.88
8.9. Fotoluminescencja	.88
8.10. Absorpcja przejściowa w zakresie femtosekundowym	. 89
8.11. Generowanie tlenu singletowego	. 90
8.12. Elektroluminescencja	. 90
8.13. Obliczenia kwantowo-chemiczne	91
PRZEDSTAWIENIE I OMÓWIENIE WYNIKÓW	. 92
9. Arylowe pochodne 2,2':6',2"-terpirydyny (Ar-terpy) i 2,6-di(pirazyn-2-ylo)pirydyny (Ar-dppy)	92
9.1. Synteza i struktura molekularna	. 92
9.2. Właściwości termiczne	100
9.3. Badania elektrochemiczne	102
9.4. Właściwości absorpcyjne	104
9.5. Właściwości fotoluminescencyjne	108
9.6. Obliczenia teoretyczne	117
10. Związki koordynacyjne renu(I) z arylowymi pochodnymi 2,2':6',2"-terpirydy	yny
i 2,6-di(pirazyn-2-ylo)pirydyny	125
10.1. Synteza i struktura molekularna	125
10.2. Właściwości termiczne	135
10.3. Charakterystyka elektrochemiczna	136
10.4. Właściwości absorpcyjne	139
10.5. Właściwości fotoluminescencyjne	145

10.6. Identyfikacja stanów przejściowych za pomocą absorpcji przejściowej	155
10.7. Związki koordynacyjne renu(I) jako warstwy aktywne w laboratoryjnych o	diodach
elektroluminescencyjnych	164
10.8. Ocena zdolności związków renu(I) do generowania tlenu singletowego	167
10.9. Obliczenia teoretyczne	169
11. Podsumowanie i najważniejsze osiągnięcia	180
12. Literatura	184
13. Życiorys i dorobek naukowy	188
ANEKS	190

Streszczenie

2,2':6',2"-Terpirydyna oraz jej pochodne należą do grupy ligandów chelatujących pozwalających na uzyskiwanie trwałych związków koordynacyjnych z wieloma metalami, począwszy od pierwiastków bloku *p* poprzez metale przejściowe do lantanowców i aktynowców. Tworzone przez te ligandy związki koordynacyjne znajdują szereg zastosowań w katalizie, obrazowaniu biologicznym, optoelektronice, a także posiadają interesujące właściwości magnetyczne i wykazują działanie przeciwnowotworowe. 2,2':6',2"-Terpirydyna oraz jej analogi są zwykle otrzymywane w jednoetapowej syntezie Kröhnke'go, co pozwala na stosunkowo łatwą i szybką ich modyfikację zarówno poprzez tworzenie jej analogów w wyniku zastąpienia bocznych pierścieni pirydylowych innymi pierścieniami heterocyklicznymi.

Niniejsza praca opisuje badania nad związkami koordynacyjnymi renu(I) z ligandami będącymi pochodnymi 2,2':6',2"-terpirydyny (*terpy*) oraz 2,6-di(pirazyn-2-ylo)pirydyny (*dppy*). Do modyfikacji *terpy* i *dppy* zastosowano podstawniki arylowe (1-naftalenowy, 2-naftalenowy, 9-antracenowy, 2-antracenowy, 9-fenantrenowy i 1-pirenowy), które zostały wprowadzone w miejsce atomów wodoru w pozycji 4' liganda *terpy* lub pozycji 4 liganda *dppy*. Ligandy tego typu, ze względu na obecność wielopierścieniowych węglowodorów aromatycznych, w efekcie koordynacji do jonu metalu przejściowego dają możliwość otrzymania układów bichromoforowych cechujących się znacznie wydłużonymi czasami życia luminescencji w temperaturze pokojowej w wyniku ustalenia się stanu równowagi pomiędzy stanami trypletowymi o zbliżonej energii ³MLCT i ³IL.

Otrzymane arylowe pochodne 2,2':6',2"-terpirydyny i 2,6-di(pirazyn-2-ylo)pirydyny oraz ich związki koordynacyjne renu(I) poddane zostały szczegółowym badaniom strukturalnym, elektrochemicznym oraz optycznym, w oparciu o które dokonano charakterystyki ich stanów podstawowych i wzbudzonych. Dla wybranych związków renu(I), bazując na wynikach ultraszybkiej spektroskopii absorbcji przejściowej w reżimie femtosekundowym, wyznaczono kinetykę procesów fotofizycznych zachodzących po fotowzbudzeniu tych układów, zaproponowano diagram poziomów energetycznych oraz potwierdzono ustalenie się stanu równowagi pomiędzy stanami trypletowymi ³MLCT i ³IL w przypadku związków renu(I) z podstawnikami pirenowymi. W efekcie badań otrzymano związki renu(I) o znacznie wydłużonych czasach życia luminescencji w temperaturze pokojowej, a dla związków renu(I) z pochodnymi 2,2':6',2"-terpirydyny z podstawnikami antracenowymi wykazano ich zdolność do generowania tlenu singletowego. Dokonano również wstępnej oceny przydatności otrzymanych zwiazków emisyine do zastosowań jako warstwy w diodach elektroluminescencyjnych. Wyznaczone w oparciu o uzyskane wyniki badań zależności pomiedzy struktura liganda Ar-terpy i Ar-dppy a właściwościami optycznymi zwiazków koordynacyjnych renu(I) [ReCl(CO)₃(Ar-terpy- κ^2 N)] oraz [ReCl(CO)₃(Ar-dppy- κ^2 N)] są istotne pełniejszego zrozumienia procesów fotofizycznych zachodzących w związkach dla koordynacyjnych metali przejściowych, a tym samym do projektowania materiałów o dobrze zdefiniowanych właściwościach optycznych w kontekście ich potencjalnych zastosowań.

Abstract

2,2':6',2"-Terpyridine and its derivatives belong to a group of chelating ligands that are able to form stable complexes with many metals, that are p-block elements, transition metals, as well as lanthanides and actinides. Coordination compounds of these ligands can be employed in catalysis, biological imaging, optoelectronics, as well as they are important due to their interesting magnetic and anti-cancer properties. 2,2':6',2"-Terpyridine and its analogues are usually obtained by one-step and efficient Kröhnke condensation. This method allows for easy modifications of the *terpy* core by introduction of appropriate substituents into the position 4' and replacement of peripherals pyridine rings in *terpy* by another heterocyclic rings.

The doctoral dissertation presents findings of my studies for rhenium(I) complexes with 2,2':6',2"-terpyridine (*terpy*) and 2,6-bis(pyrazin-2-yl)pyridine (*dppy*) derivatives. The ligand modifications were realized by incorporating polycyclic aromatic hydrocarbons (1-naphtyl, 2-naphtyl, 9-anthryl, 2-anthryl, 9-phenanthrenyl and 1-pyrenyl groups) into the position 4' of *terpy* and 4 of *dppy* frameworks. Such ligands, thanks to the presence of polycyclic aromatic hydrocarbons, give a possibility of obtaining bichromophoric systems with enhanced room-temperature emission lifetimes as a result of formation of an excited state equilibrium between the ³MLCT and ³IL states sharing similar energy.

The obtained aryl derivatives of 2,2':6',2"-terpyridine and 2,6-bis(pyrazin-2-yl)pyridine and their rhenium(I) complexes were thoroughly investigated. On the basis of structural, electrochemical and optical studies, their ground and excited states were characterized. For selected rhenium(I) complexes, ultrafast femtosecond transient absorption studies were performed, and dynamics of photophysical processes occurring after the photoexcitation was determined, and the energy level diagrams were proposed. For Re(I) complexes with pyrene-substituted ligands, the excited state equilibrium between the ³MLCT and ³IL states was confirmed.

As a result of the research, rhenium(I) complexes with significantly prolonged luminescence lifetimes at room temperature were obtained, and the ability of Re(I) complexes bearing anthrylsubstituted *terpy* ligands for singlet oxygen generation was evidenced. Additionally, preliminary studies towards application of obtained Re(I) complexes in organic light emitting diodes (OLEDs) as emissive layers were carried out. Correlations between *Ar-terpy/Ar-dppy* ligand structure and optical properties of resulting rhenium(I) complexes [ReCl(CO)₃(Ar-terpy- κ^2 N)] and [ReCl(CO)₃(Ar-dppy- κ^2 N)], determined within the research, are of significance for better understanding of photophysical processes occurring in transition metals complexes after photoexcitation, as well as they are essential in view of design of new functional materials with well-defined photophysical behaviour for suitable applications.

Wykaz skrótów

terpy, terpirydyna - 2,2':6',2"-terpirydyna dppy - 2,6-di(pirazyn-2-ylo)pirydyna dtpy-2,6-di(tiazol-2-ylo)pirydyna An - antracen Ar - podstawniki arylowe bpy, bipirydyna – 2,2'-bipirydyna Bu₄NPF₆ - heksafluorofosforan tetrabutyloamioniowy DMF - N,N-dimetyloformamid DMSO - dimetylosulfotlenek DPBF - 1,3-difenyloizobenzofuran EtOH - etanol Fc – ferrocen FTO – płytka szklana pokryta tlenkiem cyny domieszkowanym fluorem ITO – płytka szklana pokryta mieszaniną tlenku indu i cyny MeCN – acetonitryl MeI - jodek metylu MeOH - metanol (N-N) – oznaczenie ligandów iminowych o koordynacji dwukleszczowej Naft - grupa naftylowa NH₄OAc – octan amonu PBD - 2-(4-tert-butylofenylo)-5-(4-bifenylo)-1,3,4-oksadiazol PEDOT:PSS - poli-3,4-etylenodioksytiofen:polistyren sulfonowany Ph – grupa fenylowa Phen, fenantrolina - 1,10-fenantrolina PVK - poli(N-winylokarbazol) py – pirydyna tBuOK - tert-butanolan potasu

2D COSY – dwuwymiarowa spektroskopia korelacyjna (2D COrrelation SpectroscopY)

2D NOESY - homojądrowa technika dwuwymiarowa wykorzystująca efekt Overhausera (Nuclear

Overhauser Effect SpectroscopY)

 κ^2 – koordynacja dwukleszczowa, bidentna

 κ^3 – koordynacja trójkleszczowa, tridentna

τ – czas życia stanu wzbudzonego

λ-długość fali

 $\Phi_{\Delta O2}$ – wydajność kwantowa generowania tlenu singletowego

a – promień wnęki Onsager'a

A – absorbancja

ATR – spektroskopia osłabionego całkowitego odbicia w podczerwieni(Attenuated Total Reflectance) c – predkość światła w próżni

CSD - baza struktur krystalograficznych Cambridge Structural Database

CT – przejście z przeniesieniem ładunku (Charge-Transfer)

CV – woltamperometria cykliczna (Cyclic Voltammetry)

DAS – widmo skojarzone z procesem fotochemicznym wyznaczone za pomocą algorytmu analizy globalnej (Decay Associated Spectrum)

DFT – teoria funkcjonałów gęstości (Density Functional Theory)

DSC - różnicowa kalorymetria skaningowa (Differential Scanning Calorimetry)

DPV - pulsowa woltamperometria cykliczna (Differential Pulse Voltammetry)

e⁻ – elektron

ε₀ – stała dielektryczna rozpuszczalnika w próżni

ε – molowy współczynnik absorpcji

EA – powinowactwo elektronowe (Electron Affinity)

EEP – potencjał ekstrakcji elektronów (Electron Extraction Potential)

Eg – przerwa energetyczna pomiędzy orbitalami HOMO i LUMO

ESA – absorpcja stanów wzbudzonych (Excited State Absorption)

ESI-MS – spektroskopia mas z jonizacją techniką elektrospreju (ElectroSpray Ionization Mass Spectroscopy)

 Δf – polaryzacja orientacyjna rozpuszczalnika

FRET – rezonansowe przeniesienie energii Förstera(Förster Resonance Energy Transfer)

FT-IR – spektroskopia w podczerwieni z transformacją Fouriera (Fourier-transform infrared spectroscopy)

GSB – depopulacja stanu podstawowego, wybielenie stanu podstawowego (Ground State Bleaching)

HEP – potencjał ekstrakcji dziur (Hole Extraction Potential)

h – stała Planck'a

HMBC – heterojądrowa korelacja dalekiego zasięgu (Heteronuclear Multiple Bond Coherence)

HMQC – heterojądrowa korelacja z detekcją przejść wielokwantowych (Heteronuclear Multiple Quantum Correlation)

HOMO – najwyższy zapełniony orbital molekularny (Highest Occupied Molecular Orbital)

HRMS – spektroskopia mas wysokorozdzielcza (High Resolution Mass Spectrometry)

HSOMO – najwyżej leżący orbital molekularny obsadzony pojedynczo (Highest Single Occupied Molecular Orbital)

ICT - wewnątrzcząsteczkowe przeniesienie ładunku (Intramolecular Charge Transfer)

IL – przejście elektronowe w obrębie liganda (IntraLigand)

ILCT – przejście elektronowe z przeniesieniem ładunku wewnątrz liganda (IntraLigand-Charge-Transfer) IP – potencjał jonizacji (Ionization Potential)

IRF - funkcja odpowiedzi aparatu (Instrument Response Function)

ISC – przejście międzysystemowe (Intersystem Crossing)

L-ligand

LMCT – przejścia elektronowe z przeniesieniem ładunku z liganda na metal (Ligand-to-Metal-Charge-Transfer)

LSOMO – najniżej leżący orbital molekularny obsadzony pojedynczo (Lowest Single Occupied Molecular Orbital)

LUMO - najniższy niezapełniony orbital molekularny (Lowest Unoccupied Molecular Orbital)

 μ – moment dipolowy

MC - stan energetyczny zlokalizowany na centrum metalicznym (Metal-Centered)

MLCT – przejścia elektronowe z przeniesieniem ładunku z metalu na liganda (Metal-to-Ligand-Charge-Transfer)

n – współczynnik załamania światła dla rozpuszczalnika

NIR – zakres promieniowania bliskiej podczerwieni (Near-InfraRed)

NMR – spektroskopia magnetycznego rezonansu jądrowego (Nuclear Magnetic Resonance)

OLED - organiczne diody elektroluminescencyjne (Organic Light-Emitting Diode)

PCM - model spolaryzowanego kontinuum (Polarizable Continuum Model)

PL – fotoluminescencja

SE - emisja wymuszona (Stimulated Emission)

T_c – temperatura krystalizacji

T_g – temperatura zeszklenia

T_m – temperatura topnienia

TA – spektroskopia absorpcji przejściowej (Transient Absorption spectroscopy)

TCSPC – metoda czasowo skorelowanego zliczania pojedynczego fotonu (Time-Correlated Single Photon Counting)

TD-DFT – czasowo-zależna teoria funkcjonałów gęstości (Time-Dependent Density Functional Theory TGA – analiza termograwimetryczna (ThermoGravimetric Analysis)

TRES – czasowo-rozdzielcza spektroskopia emisyjna (time-resolved emission spectra)

UV - zakres promieniowania nadfioletowego (UltraViolet)

Vis – zakres promieniowania światła widzialnego (Visible light)

Wstęp

2,2':6',2''-Terpirydyna znana jest od roku 1932, kiedy to Morgan i Burstall potwierdzili jej powstawanie w niewielkich ilościach w reakcji pirydyny i bezwodnego chlorku żelaza(III) prowadzonej w warunkach wysokiego ciśnienia i temperatury w autoklawie stalowym. Na przestrzeni wielu lat była poszukiwana wydajna, selektywna, łatwa i stosunkowo tania metoda syntezy 2,2':6',2''-terpirydyny (*terpy*). Sukcesem okazała się metoda Kröhnke'go (1976 rok), która może być z powodzeniem stosowana zarówno do syntezy 2,2':6',2''-terpirydyn modyfikowanych różnymi podstawnikami w pozycji 4', jak i pochodnych zawierających zamiast bocznych pierścieni pirydyny inne aromatyczne pierścienie heterocykliczne.

Geometria cząsteczki 2,2':6',2"-terpirydyny sprzyja tworzeniu trwałych związków koordynacyjnych z prawie wszystkimi metalami przejściowymi okresów 4, 5 i 6, większością metali bloku p układu okresowego, a także ze wszystkimi lantanowcami oraz wybranymi związek koordynacyjny 2,2':6',2"-terpirydyny aktynowcami. Pierwszy Z renem(I) - $[\text{ReCl}(\text{CO})_3(\text{terpy}-\kappa^2\text{N})]$ - został otrzymany w 1988 roku przez Juris'a, a wyraźny wzrost naukowego zainteresowania tą grupą połączeń obserwuje się po 2000 roku. Ze względu na właściwości fotofizyczne karbonylowe związki Re(I) znajdują zastosowania w katalizie, obrazowaniu biologicznym, terapii antynowotworowej, a także poszukuje się w tej grupie materiałów dla optoelektroniki, w tym organicznych diod elektroluminescencyjnych (OLED). Układy te są również niezmiernie istotne w kontekście badań podstawowych. Systematyczne badania tych połączeń wnoszą duży wkład w zrozumienie złożoności procesów transferu elektronów i energii w związkach metali przejściowych następujących po ich fotowzbudzeniu.

W części literaturowej niniejszej pracy dokonałam charakterystyki 2,2':6',2"-terpirydyny pochodnych. Charakterystyka obejmowała metody i jej syntezy, opis struktur krystalograficznych oraz zdolności kompleksotwórczych tych ligandów. Następnie dokonałam opisu właściwości strukturalnych, spektroskopowych i termicznych związków koordynacyjnych renu(I) z 2,2':6',2"-terpirydyną skoordynowaną do jonu centralnego w sposób dwui trójkleszczowy - [ReCl(CO)₃(terpy-κ²N)] oraz [ReCl(CO)₂(terpy-κ³N)]. Kolejny z rozdziałów dotyczył związków koordynacyjnych renu(I) z pochodnymi 2,2':6',2"-terpirydyny. Analiza danych literaturowych obejmowała opis wpływu modyfikacji strukturalnych liganda terpy właściwości strukturalne, termiczne, elektrochemiczne i optyczne na związków koordynacyjnych renu(I). W ostatnim rozdziale przedstawiłam jedną z metod projektowania związków koordynacyjnych określaną jako "podejście bichromoforowe". Procedura

10

ta umożliwia otrzymywanie związków o wydłużonych czasach zaniku luminescencji, co jest niezwykle istotne w kontekście potencjalnych zastosowań tych układów.

W oparciu o założenia "podejścia bichromoforowego" zostały zaprojektowane karbonylowe związki koordynacyjne renu(I), będące przedmiotem niniejszej rozprawy doktorskiej. Są to związki renu(I) z pochodnymi 2,2':6',2"-terpirydyny oraz 2,6-di(pirazyn-2-ylo)pirydyny podstawnikami arylowymi: 1-naftalenowym, 2-naftalenowym, 9-antracenowym, \mathbf{Z} 2-antracenowym, 9-fenantrenowym i 1-pirenowym, przyłączonymi w pozycji 4' liganda terpy i 4 liganda dppy. W części eksperymentalnej pracy dokonałam opisu ich struktury i charakterystyki ich stanów podstawowych i wzbudzonych oraz dokonałam oceny przydatności otrzymanych związków do zastosowań jako warstwy emisyjne diodach W elektroluminescencyjnych lub generacji tlenu singletowego. Dyskusja opierała się na wynikach badań przeprowadzonych za pomocą rentgenowskiej analizy strukturalnej, spektroskopii IR i NMR, woltamperometrii cyklicznej oraz spektroskopii elektronowej, w tym zarówno technik stacjonarnych jak i czasowo-rozdzielczych. Kinetykę procesów fotofizycznych zachodzących w efekcie fotowzbudzenia i naturę stanu podstawowego zaprojektowanych karbonylków renu(I) opisałam bazując na wynikach badań fotoluminescencyjnych oraz ultraszybkiej spektroskopii absorbcji przejściowej w reżimie femtosekundowym.

Cel i zakres pracy

Będące przedmiotem niniejszej rozprawy doktorskiej związki koordynacyjne renu(I) z pochodnymi 2,2':6',2"-terpirydyny oraz 2,6-di(pirazyn-2-ylo)pirydyny z podstawnikami arylowymi, 1-naftalenowym, 2-naftalenowym, 9-antracenowym, 2-antracenowym, 9-fenantrenowym i 1-pirenowym, przyłączonymi w pozycji 4' liganda *terpy* lub pozycji 4 liganda *dppy* zostały zaprojektowane i otrzymane w celu:

- zbadania wpływu wielopierścieniowych podstawników arylowych na charakter stanu podstawowego i wzbudzonego związków koordynacyjnych [ReCl(CO)₃(Ar-terpyκ²N)] i [ReCl(CO)₃(Ar-dppy-κ²N)] oraz kształtowania w ten sposób właściwości optycznych związków renu(I);
- wyznaczenia dynamiki procesów fotofizycznych zachodzących w efekcie fotowzbudzenia związków [ReCl(CO)₃(Ar-terpy-κ²N)];
- określenia możliwości modyfikacji właściwości optycznych karbonylowych związków renu(I) poprzez dobór odpowiedniego rdzenia liganda triiminowego;
- otrzymania związków renu(I) o znacznie wydłużonych czasach życia luminescencji w temperaturze pokojowej w wyniku ustalenia się stanu równowagi pomiędzy stanami trypletowymi ³MLCT i ³IL;
- uzyskania związków renu(I) zdolnych do generacji tlenu singletowego;
- dokonania oceny przydatności związków [ReCl(CO)₃(Ar-terpy-κ²N)]
 i [ReCl(CO)₃(Ar-dppy-κ²N)] do zastosowań jako warstwy emisyjne w diodach elektroluminescencyjnych.

Szczegółowy zakres badań wykonanych w niniejszej pracy obejmował:

• syntezę, charakterystykę fizykochemiczną i badania właściwości optycznych pochodnych 2,2':6',2"-terpirydyny oraz 2,6-di(pirazyn-2-ylo)pirydyny z podstawnikami arylowymi: 1-naftalenowym, 2-naftalenowym, 9-antracenowym, 2-antracenowym, 9-fenantrenowym i 1-pirenowym;

• otrzymanie związków koordynacyjnych renu(I) z pochodnymi *Ar-terpy* i *Ar-dppy* w reakcji [Re(CO)₅Cl] i odpowiedniego liganda;

potwierdzenie struktury molekularnej [ReCl(CO)₃(Ar-terpy-κ²N)]
 i [ReCl(CO)₃(Ar-dppy-κ²N)] przy wykorzystaniu technik spektroskopowych:
 wysokorozdzielczej spektrometrii mas HRMS, jądrowego rezonansu magnetycznego NMR,
 spektroskopii oscylacyjnej w zakresie podczerwieni IR, a także analizy elementarnej;

12

• wyznaczenie struktury molekularnej i krystalicznej związków uzyskanych w formie monokrystalicznej za pomocą rentgenowskiej analizy strukturalnej;

• określenie właściwości elektrochemicznych i termicznych otrzymanych związków;

• badania właściwości absorpcyjnych w zakresie UV-Vis wraz z przypisaniem obserwowanym pasmom charakteru przejść elektronowych;

• pomiary właściwości fotoluminescencyjnych w roztworze, ciele stałym i niskotemperaturowej matrycy za pomocą technik stacjonarnych jak i czasoworozdzielczych;

• dokonanie opisu procesów fotofizycznych następujących po fotowzbudzeniu cząsteczki danego związku koordynacyjnego renu(I) i wyznaczenie uproszczonego diagramu poziomów energetycznych w oparciu o wyniki badań fotoluminescencyjnych i ultraszybkiej absorpcji przejściowej ;

• wykonanie obliczeń kwantowo-mechanicznych metodami DFT i TD-DFT i zastosowanie ich do interpretacji właściwości optycznych celem lepszego zrozumienia natury stanów biorących udział w procesach absorpcji oraz emisji;

 skonstruowanie laboratoryjnych diod elektroluminescencyjnych z użyciem wybranych związków jako warstw aktywnych, wyznaczenie parametrów otrzymanych diod oraz dokonanie oceny potencjału tych związków do zastosowań w technologii OLED;

• ocenę zdolności związków renu(I) charakteryzujących się długimi czasami życia luminescencji w temperaturze pokojowej do generowania tlenu singletowego;

 zdefiniowanie zależności pomiędzy strukturą liganda Ar-terpy i Ar-dppy a właściwościami optycznymi związków renu(I) [ReCl(CO)₃(Ar-terpy-κ²N)] oraz [ReCl(CO)₃(Ar-dppy-κ²N)].

13

CZĘŚĆ TEORETYCZNA

1. Poszukiwanie wydajnej metody syntezy 2,2':6',2"-terpirydyny i jej pochodnych

Po raz pierwszy 2,2':6',2"-terpirydyna (terpy) została uzyskana z bardzo niską wydajnością (ułamek procenta) w 1932 roku przez Morgan'a i Burstall'a. Synteza polegała na ogrzewaniu pirydyny w obecności bezwodnego chlorku żelaza(III) w warunkach wysokiego ciśnienia w autoklawie stalowym. W wyniku reakcji oprócz 2,2':6',2"-terpirydyny otrzymano ponad 20 innych związków, a wśród nich mieszaninę oligopirydyn i izomerów terpirdynowych oraz związki koordynacyjne żelaza(III) [1]. W 1938 roku celem otrzymania czystej 2,2':6',2"terpirydyny Burstall przeprowadził reakcję 6-bromo-2,2'-bipirydyny i 2-bromopirdynyny w obecności sproszkowanej miedzi. Niestety i w tym przypadku produktami reakcji była mieszanina wielu związków, wśród których 2,2':6',2"-terpirydyna występowała jedynie w śladowych ilościach. Wyizolowanie jej w czystej postaci wymagało długotrwałych i żmudnych procesów oczyszczania [2]. Dopiero po upływie ponad czterdziestu lat opracowano metodę pozwalającą na otrzymywanie 2,2':6',2"-terpirydyny jako jedynego produktu z dość wysoką wydajnością, wynoszącą 40%. Pierwszą tego typu syntezę przeprowadził Kauffman w 1976 roku i polegała ona na reakcji 2,2'-bipirydyny z 2-litiopirydyną w środowisku eteru dietylowego w temperaturze -40°C [3]. Metoda ta została zmodyfikowana w latach 90 XX wieku co pozwoliło na poprawę wydajności, która wzrosła do 65%. Modyfikacja polegała na zamianie 2,2'-bipirydyny na 6-tioetylo-2,2'-bipirydynę, która w czasie reakcji utleniana była do sulfotlenku etylowo-2,2'-bipirydylowego [4]. Znaczną poprawę wydajności reakcji uzyskano poprzez zastosowanie katalizatorów w postaci związków koordynacyjnych metali przejściowych. Jako pierwszy takie podejście do syntezy 2,2':6',2"-terpirydyny zastosował Stille w 1996 roku, wykorzystując związki cynoorganiczne pirydyny, które ulegały reakcji z 2-bromopirydyną lub 2,6-dibromopirydyną w środowisku toluenu. Katalizatorem był [Pd(PPh₃)₄], a wydajności wynosiły 74 i 72% odpowiednio dla 2,6-dibromopirydyny i 2-bromopirydyny [5]. W następnych latach naukowcy podejmowali próby uzyskania 2,2':6',2"-terpirydyny metodami podobnymi do reakcji Stille z zastosowaniem różnych katalizatorów palladowych [6-8]. Obecnie metody te mają jednak stosunkowo małe zastosowanie w związku z użyciem cynoorganicznych związków, które charakteryzują się dużą toksycznością.

Zdecydowanie większą popularnością cieszą się metody syntezy przebiegające z udziałem diketonu 4 ' -metylotio-2,2':6',2"-terpirydyny. Po raz pierwszy to podejście zastosował Potts w latach 80 XX wieku. Uzyskany diketon 4'-metylotio-2,2':6',2"-terpirydyny został

zredukowany niklem Raney'a. Wydajność reakcji była stosunkowo wysoka i wynosiła 60%, jednakże produkt końcowy zanieczyszczony był 4-etoksy-2,2':6',2"-terpirydyną [9]. Modyfikacja tej metody poprzez zamianę reduktora na generowany in situ borowodorek niklu(II) (w wyniku reakcji NiCl₂·6 H₂O i NaBH₄) spowodowała pozbycie się produktu ubocznego, jednak znacząco podniosła koszt całej syntezy. Schemat reakcji wykonanej przez Potts'a przedstawiono na Rysunku 1.

Rysunek 1. Schematyczny zapis reakcji wykonanej przez Potts'a [9].

Metoda zastosowana przez Potts'a doczekała się wielu modyfikacji, z których najważniejszą było wyeliminowanie z syntezy problematycznych do oczyszczania oraz nieprzyjemnych pod względem zapachu związków siarki. Zastąpiono KOH lub NaOH silniejszą zasadą jaką jest tBuOK, co pozwoliło na zmniejszenie ilości etapów oraz zapewniało łagodniejsze warunki prowadzenia syntezy. Modyfikacja dotyczyła także środowiska prowadzenia reakcji, a więc zmiany ściśle bezwodnych rozpuszczalników na np. etanol zwierający wodę lub całkowitego zrezygnowania z prowadzenia reakcji w środowisku rozpuszczalnika [10,11]. Wydajność otrzymywania podstawionych terpirydyn znacznie zwiększono przez przeprowadzenie syntezy w polu mikrofalowym zamiast syntezy metodami klasycznymi [12].

Obecnie do syntezy pochodnych 2,2':6',2"-terpirydyny powszechnie stosuje się metodę Kröhnke'go, która polega na reakcji 2-acetylopirydyny i odpowiedniego aldehydu w zasadowym środowisku i obecności wodnego roztworu amoniaku lub octanu amonu, a jej schemat przedstawiono na Rysunku 2. Może być ona z powodzeniem stosowana do otrzymywania podstawionych w pozycji 4' terpirydyn, jednak podstawniki ograniczają się do podstawników aromatycznych lub heteroaromatycznych [13,14].

Rysunek 2. Schematyczny zapis reakcji Kröhnke'go [13].

Co równie istotne, w metodzie tej zastąpienie 2-acetylopirydyny innymi ketonami daje możliwość otrzymania pochodnych 2,2':6',2"-terpirydyny, w których w miejsce bocznych pierścieni pirydynowych przyłączonych do centralnej pirydyny w pozycjach 2' oraz 6' zostają wprowadzone inne pierścienie takie jak: pirazynowy, tiazolowy, tiofenowy, 2-pirydylowy, 3-pirydylowy oraz 4-pirydylowy, a także bardziej skomplikowane cząsteczki bazujące na zmodyfikowanych pierścieniach fenylowych, cząsteczce kumaryny lub benzimidazolu [15-19].

Zupełnie innym podejściem do syntezy 2,2':6',2"-terpirydyny jest wykorzystanie jej zdolności kompleksujących. Jednym z przykładów jest zaproponowana w 1988 roku synteza pozwalająca na osiągnięcie wysokiej wydajności wynoszącej 81%. Proces polega na utworzeniu związku koordynacyjnego *terpy* z jonami żelaza(II), a następnie potraktowaniu go alkalicznym roztworem nadtlenku wodoru z utworzeniem 2,2':6',2"-terpirydyny. Schemat syntezy został przedstawiony na Rysunku 3 [20].

Rysunek 3. Schemat syntezy 2,2':6',2"-terpirydyny z wykorzystaniem jej właściwości kompleksujących [20].

2. Struktura i zdolności kompleksotwórcze 2,2':6',2"-terpirydyny

Znane są dwie odmiany polimorficzne 2,2':6',2"-terpirydyny. Pierwszą z nich uzyskano w 1992 roku w wyniku oczyszczenia związku otrzymanego metodą opisaną przez Pottsa z zastosowaniem kolumny chromatograficznej, w której jako eluentu użyto toluenu. Toluenowy roztwór odparowano uzyskując olej, z którego pod ciśnieniem atmosferycznym w wyniku chłodzenia wykrystalizowała w postaci igieł 2,2':6',2"-terpirydyna. W ten sposób otrzymano odmianę z układu rombowego, krystalizującą w grupie przestrzennej P212121. Badania strukturalne potwierdziły, że cząsteczki 2,2':6',2"-terpirydyny charakteryzują się konfiguracją trans, trans atomów azotu zewnętrznych pierścieni pirydylowych. Wcześniej taka izomeria była postulowana na podstawie badań spektroskopowych ¹H NMR [21-24] oraz spektroskopii absorpcyjnej w zakresie UV-Vis [25,26]. Jednak dopiero dzięki wyznaczeniu struktury molekularnej tego związku w 1992 roku izomeria została potwierdzona w sposób jednoznaczny. Jest to konfiguracja energetycznie uprzywilejowana, która pozwala na minimalizację oddziaływań pomiędzy atomami wodoru a wolnymi parami elektronowymi atomów azotu pierścieni pirydynowych. Kąty dwuścienne pomiędzy płaszczyzną wyznaczoną przez centralny pierścień pirydylowy a płaszczyznami pierścieni bocznych wynoszą 5,53(1)° oraz 8,28(1)°, co czyni cząsteczkę 2,2':6',2"-terpirydyny niemal całkowicie płaską. Wiązania pomiędzy atomami węgla łączącymi pierścienie pirydylowe wynoszą średnio 1,491 Å i są wydłużone w stosunku do wiązań łączących atomy wegla w pierścieniach, dla których średnia długość wynosi 1,387 Å. Średnia długość wiązania pomiędzy atomem azotu oraz węgla w tej cząsteczce wynosi 1,342 Å, a więc wiązania te są krótsze od wiązań C-C. Upakowanie cząsteczek terpy w sieci krystalicznej wzdłuż osi krystalograficznej a ma charakter upakowania kolumnowego co obrazuje Rysunek 4 [27].

Rysunek 4. Upakowanie przestrzenne cząsteczek w komórce elementarnej dla odmiany układu rombowego.

Drugą odmianę polimorficzną 2,2':6',2"-terpirydyny, krystalizującą w grupie przestrzennej $P2_1/c$ układu jednoskośnego uzyskano w roku 2005. Bezbarwne monokryształy zostały otrzymane poprzez krystalizację już handlowo dostępnej 2,2':6',2"-terpirydyny z mieszaniny heksanu i toluenu. W komórce elementarnej tej odmiany obecne są dwie cząsteczki terpy różniące się tylko nieznacznie długościami wiązań oraz katami między nimi. Nie różnią się natomiast konfiguracją, która w tym przypadku również oznaczona jest jako trans, trans. Kąty pomiędzy płaszczyznami wyznaczonymi przez boczne pierścienie i centralną pirydynę obu molekuł obecnych w komórce elementarnej wynoszą: dla molekuły pierwszej 5,19° i 4,77°, natomiast dla drugiej cząsteczki 7,82° i 4,05°. Średnia długość wiązania C-C w pierścieniach aromatycznych wynosi 1,379 Å oraz 1,490 Å dla wiązań łączących pierścienie pirydylowe. Są to długości wiązań bardzo zbliżone do tych występujących w cząsteczkach krystalizujących w układzie rombowym. Również średnia długość wiązania pomiędzy atomem azotu oraz węgla jest bardzo zbliżona do molekuł z układu rombowego i wynosi 1,341 Å. Obecność dwóch cząsteczek w komórce elementarnej związana jest z występowaniem między nimi oddziaływań π - π stackingowych, które zostały przedstawione na Rysunku 5(c). Odległość między poszczególnymi pierścieniami obu cząsteczek jest charakterystyczna dla tego typu oddziaływań i wynosi 3,700 Å dla pierścieni środkowych oraz 3,692 Å i 4,183 Å dla odległości pomiędzy pierścieniami bocznymi. Upakowanie cząsteczek w sieci krystalicznej odmiany jednoskośnej wzdłuż osi krystalograficznej c pokazano na Rysunku 5(a) i można je określić jako upakowanie typu jodełki. Na Rysunku 5(b) widzimy natomiast oddziaływanie pomiędzy wodorami bocznych pierścieni pirydylowych jednej pary molekuł z pierścieniem bocznym i środkowym sąsiadującej molekuły [28].

Rysunek 5. Upakowanie przestrzenne cząsteczek w komórce elementarnej dla układu jednoskośnego wzdłuż osi *c* (a), oddziaływanie pomiędzy sąsiadującymi cząsteczkami (b) oraz oddziaływanie π-π stackingowe (c).

Podstawowe dane krystalograficzne charakteryzujące dwie odmiany polimorficzne 2,2':6',2"-terpirydyny przedstawiono w Tabeli 1.

	1992	2005
Wzór empiryczny	$C_{15}H_{11}N_3$	$C_{15}H_{11}N_3$
Masa molowa [g/mol]	233,30	233,27
Układ krystalograficzny	rombowy	jednoskośny
Grupa przestrzenna	$P 2_1 2_1 2_1$	$P2_{l}/c$
Stałe sieciowe [Å,°]	a = 3,9470(10)	a = 11,7070(2)
	b = 16,577(7)	<i>b</i> = 15,7190(3)
	c = 17,840(6)	c = 13,6210(2)
	$\alpha = 90$	$\alpha = 90$
	$\beta = 90$	$\beta = 109,2840(10)$
	$\gamma = 90$	$\gamma = 90$
Objętość [Å ³]	1167,4(7)	2365,9(7)
Ζ	4	8
Gęstość obliczona [Mg/m ³]	1,327	1,310
Wymiary kryształu [mm]	$0,5 \times 0,3 \times 0,1$	0,50 × 0,25 × 0,20
Postać kryształu	igły	
Kolor kryształu	bezbarwny	bezbarwny

Tabela 1. Dane krystalograficzne charakteryzujące dwie odmiany polimorficzne 2,2':6',2"-terpirydyny.

2,2':6',2"-Terpirydyna wykazuje zdolności tworzenia trwałych połączeń z jonami metali, z którymi może się wiązać na różne sposoby. Najliczniejsze są związki, w których *terpy* koordynuje do jonu centralnego w sposób trójkleszczowy. Połączenia tego typu 2,2':6',2"-terpirydyna tworzy z prawie wszystkimi metalami przejściowymi okresów 4, 5 i 6, większością metali bloku *p* układu okresowego, a także ze wszystkimi lantanowcami oraz wybranymi aktynowcami takimi jak neptun(V), uran(III), tor(IV) i ameryk(III). Mniej liczną grupę stanowią związki koordynacyjne, w których *terpy* wiąże się z jonem metalu tylko dwoma atomami azotu. Centrum metaliczne w tego typu związkach stanowią głównie pierwiastki grup przejściowych okresów 4–6, w tym między innymi: ren(I), srebro(I) i platyna(II). Bardzo niewiele istnieje natomiast literaturowo opisanych przykładów koordynacji jednokleszczowej z udziałem liganda *terpy*. Ten rodzaj koordynacji został potwierdzony jedynie dla kilku związków, w tym związków rodu(III) oraz złota(III), które zostały przedstawione na Rysunku 6.

Rysunek 6. Przykłady monodentnej koordynacji liganda terpy w związkach rodu(III) oraz złota(III) [29,30].

2,2':6',2"-terpirydyna może też pełnić rolę liganda mostkującego. Znanych jest w literaturze tylko kilka przykładów z tego typu koordynacją. Jednym z nich jest związek platyny(II) przedstawiony na Rysunku 7, w którym w koordynacji udział biorą atomy azotów obu bocznych grup pirydylowych oraz dwa atomy węgla w pozycji 3' oraz 5' centralnego pierścienia.

Rysunek 7. Związek koordynacyjny platyny(II) z terpy, w którym ligand koordynuje w sposób mostkowy [31].

Natomiast przykłady związków koordynacyjnych niklu(II), miedzi(II), srebra(I) oraz heterojądrowego połączenia renu(I) i srebra(I) z mostkową koordynacją liganda przy zastosowaniu tylko atomów azotu zostały przedstawione na Rysunku 8.

Rysunek 8. Przykłady mostkowej koordynacji liganda terpy w związkach niklu(II), miedzi(II), srebra(I) oraz srebra(I) i renu(I)[32-35].

3. Karbonylowe związki koordynacyjne renu(I) z 2,2':6',2"-terpirydyną – struktura i charakterystyka

Historia związków koordynacyjnych opartych na 2,2':6',2"-terpirydynie sięga roku 1932, w którym to Gilbert T. Morgan i Francis H. Burstall przeprowadzili reakcję 2,2':6',2"-terpirydyny z solą żelaza(III), otrzymując wśród licznych produktów również związki koordynacyjne żelaza(III) [36]. Pierwszy karbonylowy związek koordynacyjny renu(I) z 2,2':6',2"-terpirydyną uzyskano natomiast dopiero w roku 1988 w zespole Alberto Jurisa. Otrzymany został jako żółty osad w reakcji Re(CO)₅Cl z 2,2':6',2"-terpirydyną. Reakcję prowadzono w toluenie w temperaturze 60°C i w atmosferze argonu przez 15 godzin. Opierając się na danych literaturowych dla związków koordynacyjnych innych metali przejściowych z 2,2':6',2"-terpirydyną, Juris wraz ze współpracownikami założył, że koordynuje ona do jonu Re(I) w sposób trójkleszczowy, a powstały w reakcji związek ma wzór sumaryczny $[\text{ReCl}(\text{CO})_2(\text{terpy-}\kappa^3\text{N})]$ [37]. Już w roku 1990 Peter Anderson i jego współpracownicy wyrazili watpliwości co do trójkleszczowej koordynacji w otrzymanym karbonylku renu(I). Powtórzyli syntezę zgodnie z procedurą opublikowaną przez Jurisa i w przeciwieństwie do poprzedników otrzymali produkt w formie monokrystalicznej, co pozwoliło wyznaczyć strukturę molekularną za pomocą rentgenowskiej analizy strukturalnej (Rysunek 9), i tym samym jednoznacznie określić sposób koordynacji terpy do renu(I). Badania rentgenostrukturalne wykazały, że do centrum metalicznego koordynują trzy atomy węgla pochodzące od trzech grup karbonylowych pozostających względem siebie w izomerii facjalnej, atom chloru oraz dwa atomy azotu liganda terpirydynowego. Trzeci z pierścieni pirydylowych liganda terpirydynowego pozostaje wolny (nieskoordynowany). W sieci krystalicznej potwierdzono także obecność cząsteczki wody. Zatem wzór sumaryczny związku jest następujący [ReCl(CO)₃(terpy-κ²N)]H₂O. Ze względu na dwukleszczowy sposób koordynacji 2,2':6',2"-terpirydyny, związek [ReCl(CO)₃(terpy- κ^2 N)] można formalnie też rozpatrywać jako związek koordynacyjny Re(I) z pochodną 2,2'-bipirydyny.

Rysunek 9. Struktura molekularna związku otrzymanego w reakcji [Re(CO)₅Cl] z 2,2':6',2"-terpirydyną w toluenie w temperaturze 60°C i w atmosferze argonu (a), upakowanie cząsteczek w sieci krystalicznej wzdłuż osi *a* (b) oraz wiązania wodorowe występujące pomiędzy cząsteczką *terpy* a wodą obecną w strukturze (c).

W roku 1993 Edgar Civitello oraz jego zespół postanowili ponownie zbadać sposób koordynacji 2,2':6',2"-terpirydyny do renu(I). Zmodyfikowali nieco warunki syntezy karbonylku renu(I), stosując jako rozpuszczalnik izooktan i prowadząc reakcję bez atmosfery gazu obojętnego przez jedną godzinę. Uzyskane w ten sposób żółte monokryształy poddali badaniom rentgenostrukturalnym. W przeciwieństwie do wcześniej badanego związku [ReCl(CO)₃(terpy- κ^2 N)]·H₂O, który krystalizował w układzie jednoskośnym w grupie przestrzennej *P*2₁/*n*, związek otrzymany w zespole Civitello krystalizował w układzie trójskośnym w grupie przestrzennej *P*1, a sieć krystaliczna zbudowana była jedynie

z cząsteczek [ReCl(CO)₃(terpy- $\kappa^2 N$)]. Nie zawierała cząsteczek wody. Sposób koordynacji i wzajemne rozmieszczenie ligandów wokół jonu metalu w karbonylowym związku renu(I) pozostawały natomiast takie same.

Struktura związku [ReCl(CO)₂(terpy- κ^3 N)] z 2,2':6',2"-terpirydyną związaną z jonem renu(I) w sposób trójkleszczowy została wyznaczona metodą rentgenowskiej analizy strukturalnej dopiero w 2016 roku [38], ale wcześniej była potwierdzona za pomocą protonowego rezonansu jądrowego dla [ReCl(CO)₂(terpy- $\kappa^{3}N$)] [39] i analogu bromkowego [ReBr(CO)₂(terpy- $\kappa^{3}N$)] [40]. Związki [ReX(CO)₂(terpy-κ³N)] zostały otrzymane w reakcji pirolizy z [ReX(CO)₃(terpy- $\kappa^2 N$] (X = Cl, Br) w specjalnych ampułach przystosowanych do reakcji zachodzących w próżni. Ampule ogrzewano w piecu w temperaturze 275°C. W tych warunkach następuje eliminacja jednej cząsteczki CO i staje się możliwe utworzenie koordynacyjnego wiązania pomiędzy metalem a azotem nieskoordynowanej pirydyny. Pozostałe w sferze koordynacji położenie Podobnie grupy karbonylowe zajmują cis względem siebie. jak w przypadku [ReCl(CO)₃(terpy- κ^2 N)], związek [ReCl(CO)₂(terpy- κ^3 N)] wykazuje geometrię zniekształconego oktaderu. W jednostce asymetrycznej badanego związku znajdują się dwie cząsteczki [ReCl(CO)₂(terpy- κ^3 N)] oraz dwie cząsteczki rozpuszczalnika CHCl₃ (Rysunek 10).

Rysunek 10. Struktura związku [ReCl(CO)₂(terpy-κ³N)]²CHCl₃ (a) i upakowanie cząsteczek w sieci krystalicznej (b).

Strukturalna charakterystyka porównawcza związków [ReCl(CO)₃(terpy- κ^2 N)][·]H₂O [41], [ReCl(CO)₃(terpy- κ^2 N)] [42] oraz [ReCl(CO)₂(terpy- κ^3 N)] [38] została zawarta w Tabelach 2 i 3.

	[ReCl(CO) ₃ (terpy-κ ² N)]	[ReCl(CO) ₃ (terpy-κ ² N)]·H ₂ O	[ReCl(CO) ₂ (terpy-κ ³ N)]
Wzór empiryczny	$C_{18}H_{11}ClN_3O_3Re$	$C_{18}H_{13}ClN_3O_4Re$	$C_{36}H_{24}Cl_8N_6O_4Re_2$
Masa molowa [g/mol]	538,95	556,96	1228,61
Układ krystalograficzny	trójskośny	jednoskośny	trójskośny
Grupa przestrzenna	$P\overline{1}$	$P2_{l}/n$	$P\overline{1}$
Stałe sieciowe [Å, °]	a = 7,401(1)	a = 7,432(3)	a = 8,5275(3)
	b = 8,280(2)	<i>b</i> = 17,016(4)	b = 14,2521(5)
	c = 14,464(4)	c = 14,466(2)	c = 17,4637(6)
	$\alpha = 80,69(2)$	$\alpha = 90$	$\alpha = 77,948(2)$
	$\beta = 86,35(2)$	$\beta = 93,51(2)$	$\beta = 85,684(2)$
	$\gamma = 84,09(2)$	$\gamma = 90$	$\gamma = 79,890(2)$

Tabela 2. Wybrane dane dla [ReCl(CO)₃(terpy- κ^2 N)]H₂O [41], [ReCl(CO)₃(terpy- κ^2 N)] [42]oraz [ReCl(CO)₂(terpy- κ^3 N)] [38].

Tabela 3. Długości wiązań [Å] oraz miary kątów [°] dla [ReCl(CO)₃(terpy-κ²N)]H₂O [41], [ReCl(CO)₃(terpy-κ²N)] [42] oraz [ReCl(CO)₂(terpy-κ³N)] [38].

	[ReCl(CO) ₃ (terpy- κ^2 N)]	[ReCl(CO) ₃ (terpy- κ^2 N)] [·] H ₂ O	[ReCl(CO) ₂ (terpy- κ^3 N)]
		Długości wiązań [Å]	
Re-C1	1,909(4)	1,936(7)	1,975(10)
Re–C2	1,903(4)	1,908(7)	1,926(9)
Re–C3	1,880(4)	1,901(7)	—
Re–N1	2,151(3)	2,170(5)	2,119(7)
Re–N2	2,228(3)	2,206(5)	2,080(7)
Re–N3	—	—	2,126(7)
Re–Cl	2,493(1)	2,488(2)	2,489(3)
C101	1,171(4)	1,147	1,140
C2–O2	1,153(5)	1,150	1,061
C3–O3	1,158(5)	1,154	—
		Miary katów [°]	
C2–Re–C1	85,87(15)	85,4(3)	91,5(4)
C3–Re–C1	89,16(16)	91,4(3)	—
C3–Re–C2	88,35(17)	89,1(3)	—
C1–Re–N1	176,10(14)	174,0(2)	92,7(3)
C2–Re–N1	96,81(13)	96,3(3)	103,9(3)
C3–Re–N1	93,73(14)	94,4(2)	—
C1–Re–N2	102,64(13)	102,7(2)	94,6(3)
C2–Re–N2	168,47(13)	170,0(2)	173,7(4)
C3–Re–N2	99,41(14)	96,6(3)	—
N1-Re-N2	74,32(10)	75,2(2)	77,3(3)
C2–Re–N3	—	—	101,8(3)
C1–Re–N3	—	—	91,7(3)
N2-Re-N3	_	_	76,6(3)
N1-Re-N3	_	_	153,7(3)
C1–Re–Cl	94,53(12)	90,6(2)	176,5(2)
C2–Re–Cl	89,71(13)	90,8(2)	91,8(3)
C3–Re–Cl	175,69(11)	178,0(2)	—
N1-Re-Cl	82,68(8)	83,6(1)	85,4(2)
N2-Re-Cl	81,96(8)	83,2(1)	82,1(2)
N3-Re-Cl	_	_	88,7(2)
O1–C1–Re	177,53	175,97	177,9(9)
O2–C2–Re	179,61	178,47	173,2(8)

Zauważa się, wyraźne różnice w długościach wiązań i kątów w zależności od sposobu koordynacji 2,2':6',2"-terpirydyny. W związku [ReCl(CO)₂(terpy-κ³N)] wiązania Re–N są krótsze w porównaniu do [ReCl(CO)₃(terpy- $\kappa^2 N$)]H₂O i [ReCl(CO)₃(terpy- $\kappa^2 N$)], co wskazuje na silniejsze wiązanie między ligandem terpy i metalem w przypadku trójkleszczowej koordynacji terpirydyny. Osłabieniu, a co za tym idzie wydłużeniu, ulegają natomiast wiązania pomiędzy metalem a węglem grup karbonylowych. W związku [ReCl(CO)₂(terpy- κ^{3} N)] długości tych wiązań wynoszą: 1,975 Å oraz 1,926 Å, a w związkach $[ReCl(CO)_3(terpy-\kappa^2N)]: 1,909 \text{ Å}, 1,903 \text{ Å} i 1,880 \text{ Å} oraz [ReCl(CO)_3(terpy-\kappa^2N)] H_2O: 1,936 \text{ Å},$ 1,908 Å i 1,901 Å. Odwrotne relacje obserwuje się również przy porównaniu długości wiązań Re-Ncentralny pierścień pirydyny oraz Re-Nboczny pierścień pirydyny. Podczas gdy w związku $[\text{ReCl}(\text{CO})_2(\text{terpy-}\kappa^3\text{N})]$ zauważa się skrócenie wiązania atomu metalu z azotem centralnego pierścienia pirydylowego w porównaniu z Re-N z udziałem bocznych pierścieni pirydylowych, to w [ReCl(CO)₃(terpy- κ²N)]·H₂O i [ReCl(CO)₃(terpy- κ²N)], Re-N_{centralny pierścień pirydyny} jest dłuższe niż Re-Nboczny pierścien pirydyny. Pierścień pirydylowy nie ulegający koordynacji do atomu metalu w [ReCl(CO)₃(terpy- κ^2 N)]·H₂O i [ReCl(CO)₃(terpy- κ^2 N)] oddziałuje sterycznie z jedną z grup karbonylowych powodując zwiększenie kąta C(1)-Re(1)-N(2). W idealnym oktaedrze kąt ten wynosi 90°, natomiast w omawianych połączeniach przekracza wartość 102°. Z kolei, w rezultacie dwu- lub trójkleszczowej koordynacji terpy do jonu centralnego dochodzi do utworzenia jednego lub dwóch pięcioczłonowych pierścieni składających się z atomu renu(I), dwóch chelatujących atomów azotu i sąsiadujących z nimi dwóch atomów węgla. Powoduje to zmianę kąta N-Re-N z oczekiwanych 90° na 74,3° związku krystalizującego w układzie trójskośnym i 75,2° w przypadku układu jednoskośnego. Dla związku [ReCl(CO)₂(terpy-κ³N)], wyraźnemu zmniejszeniu ulegają dwa katy N-Re-N, przyjmując wartości 77,3° i 76,6°.

Sposób koordynacji liganda terpirydynowego, trójkleszczowy w [ReCl(CO)₂(terpy- κ^{3} N)] oraz dwukleszczowy w [ReCl(CO)₃(terpy- κ^{2} N)], można również potwierdzić z wykorzystaniem spektroskopii magnetycznego rezonansu jądrowego (NMR). Związek, w którym jon renu(I) wiąże się z dwoma grupami karbonylowymi, chlorem oraz 2,2':6',2"-terpirydyną w sposób trójkleszczowy jest związkiem posiadającym płaszczyznę zwierciadlaną (Rysunek 11). Na widmie protonowego magnetycznego rezonansu jądrowego obserwujemy 6 sygnałów. Pięć sygnałów opisuje położenie związane z dwoma równocennymi magnetycznie protonami, co wynika z symetryczności molekuły. Natomiast szósty sygnał związany jest z pojedynczym protonem w pozycji 4'. W związku [ReCl(CO)₃(terpy- κ^{2} N)] z dwukleszczową koordynacją liganda *terpy*, protony pierścieni bocznych nie są równocenne magnetycznie. W widmie tego

związku rejestrujemy jedenaście sygnałów pochodzących od jedenastu protonów. Widoczna jest też znaczna różnica w przesunięciach chemicznych protonów skoordynowanego pierścienia pirydylowego w porównaniu z protonami pierścienia nieskoordynowanego. Sygnały tych pierwszych występują przy wyższych wartościach przesunięcia chemicznego podanego w ppm w porównaniu do sygnałów protonów pierścienia wolnego (Tabela 4 i Rysunek 12). Również w widmie ¹³C dla związku o koordynacji trójkleszczowej obserwujemy mniejszą liczbę sygnałów niż dla związku dwukleszczowego. Charakterystycznymi dla obydwu związków są piki pochodzące od węgli grup karbonylowych (dwa dla [ReCl(CO)₂(terpy-κ³N)]) oraz trzy dla ([ReCl(CO)₃(terpy- κ^2 N)]), które rejestrowane są przy największych przesunięciach chemicznych (Tabela 5).

Rysunek 11. Przedstawienie pozycji protonów w związku tridentnym (a) i bidentnym (b).

Rysunek 12. Widma ¹H NMR dla związków [ReCl(CO)₂(terpy-κ³N)] oraz [ReCl(CO)₃(terpy-κ²N)]. Rysunek zaadaptowano z literatury [43] za zgodą © Royal Society of Chemistry 2015 oraz [45] za zgodą © Royal Society of Chemistry 2020.

Związek	Rozp.	Przesunięcia chemiczne protonów [ppm]	Lit.
[ReCl(CO) ₂ (κ^{3} N-terpy)]	CD ₃ CN	δ [ppm] 8,93 (2H), 8,22 (2H), 8,21 (2H), 8,05 (1H) , 7,91 (2H),	[38]
		7,34–7,40 (2H)	
	DMSO	δ [ppm] 8,87 (2H), 8,57 (2H), 8,53 (2H), 8,21 (1H), 8,03 (2H),	[43]
		7,48 (2H)	
$[\text{ReCl(CO)}_3(\kappa^2\text{N-terpy})]$	CDCl ₃	δ [ppm] 9,05 (1H, H6), 8,76 (1H, H6"), 8,50 (1H, H3"),	[44]
		8,48 (1H, H3), 8,28 (1H, H4') , 8,21 (1H, H4), 7,96 (1H, H4"),	
		7,79 (1H, H5') , 7,78 (1H, H3"), 7,62 (1H, H5), 7,55 (1H, H5")	
	CD ₃ CN	δ [ppm] 9,05 (1H, H6), 8,76 (1H, H6"), 8,50 (1H, H3') ,	[42]
		8,48 (1H, H3), 8,28 (1H, H4') , 8,21 (1H, H4), 7,96 (1H, H4"),	
		7,79 (1H, H5 '), 7,78 (1H, H3"), 7,62 (1H, H5), 7,55 (1H, H5")	
	DMSO	δ [ppm] 9,05 (1H, H6"), 8,86 – 8,80 (2H, H3",H5') , 8,78 (1H,	[45]
		H6), 8,43 (1H, H4'), 8,36 (1H, H4"), 8,03 (1H, H4), 7,90 (1H,	
		H3') , 7,81 (1H, H3), 7,78 – 7,74 (1H, H5"), 7,61 (1H, H5)	

Tabela 4. Przesunięcia chemiczne protonów dla [ReCl(CO)₂(terpy- κ^3 N)] oraz [ReCl(CO)₃(terpy- κ^2 N)].

Tabela 5. Przesunięcia chemiczne w widmie ${}^{13}C$ dla [ReCl(CO)₂(terpy- κ^3N)] oraz [ReCl(CO)₃(terpy- κ^2N)].

Związek	Rozp.	Przesunięcia chemiczne [ppm]	Lit.
[ReCl(CO) ₂ (terpy- κ^3 N)]	DMSO	δ [ppm] 157,5, 157,2 (2 grupy CO), 140,1, 138,3, 129,0, 125,0,	[43]
		122,7	
[ReCl(CO) ₃ (terpy- κ^2 N)]	DMSO	δ [ppm] 197,65 (CO), 194,33 (CO), 190,83 (CO), 161,02 (C2'),	[45]
		157,73 (C2), 156,35 (C6'), 156,13 (C2"), 152,72 (C6"), 149,27	
		(C6), 140,49 (C4'), 140,09 (C4''), 136,88 (C4), 127,69 (C3'),	
		127,44 (C5"), 125,04 (C3+C3"), 124,90 (C5), 123,66 (C5')	

Jednoznacznego przypisania rejestrowanych sygnałów dla związku [ReCl(CO)₃(terpy-κ²N)] dokonano z wykorzystaniem widm korelacyjnych 2D NMR: ¹H-¹H COSY, które opisuje sprzężenie pomiędzy protonami danego związku zachodzące za pośrednictwem wiązań chemicznych oraz ¹H-¹H NOESY obrazującego oddziaływanie pomiędzy protonami danego związku znajdującymi się blisko siebie w przestrzeni fizycznej, ale nie oddziaływującymi poprzez wiązania chemiczne (Rysunek 13).

Rysunek 13. Widma dwuwymiarowe NMR dla związku [ReCl(CO)₃(terpy- κ^2 N)]. Rysunek zaadaptowano z literatury [42] za zgodą © American Chemical Society 1993 i [45] za zgodą © Royal Society of Chemistry 2020.

Rozróżnienie związków [ReCl(CO)₃(terpy- $\kappa^2 N$)] i [ReCl(CO)₂(terpy- $\kappa^3 N$)] jest możliwe również przy zastosowaniu spektroskopii w zakresie podczerwieni. W widmie IR pierwszego związku obserwujemy trzy charakterystyczne pasma w zakresie 1850–2050 cm⁻¹ reprezentujące drgania grup karbonylowych, przedstawione schematycznie na Rysunku 14. Drganie A ' (1) jest drganiem pełnosymetrycznym - wszystkie trzy grupy karbonylowe wykonują taki sam rodzaj drgania w tym samym czasie. Pozostałe dwa drgania są asymetrycznymi. W drganiu A'(2) grupa karbonylowa leżąca w tej samej płaszczyźnie co atom N(1) terpirydyny drga w sposób przeciwny do dwóch pozostałych grup CO (wiązanie C–O ulega skróceniu, kiedy dwa pozostałe ulegają wydłużeniu). Natomiast w ostatnim rodzaju drgania A" to grupa karbonylowa leżąca wzdłuż osi wyznaczonej przez atom chloru i renu drga przeciwnie do pozostałych dwóch.

Rysunek 14. Drgania dla związku [ReCl(CO)₃(terpy- κ^2 N)]: pełnosymetryczne (a) oraz asymetryczne (b i c).

Największą energię wykazuje drganie A'(1). Na widmie zwykle jest obserwowane jako pasmo wyraźnie oddzielone od dwóch pozostałych, które z kolei mają bardzo zbliżone liczby falowe. Pasma drgań A" i A'(2) w dużym stopniu się pokrywają. Najniższą energię wykazuje drganie A". W Tabeli 6 zebrano położenia pasm w widmie IR uzyskane z pomiarów techniką pastylki KBr, zarejestrowane w rozpuszczalnikach oraz wykonane techniką ATR.

Metoda	A'(1)	A'(2)	Α″	Literatura
Pastylka z KBr	2023	1922	1866	[44]
CH ₃ CN	2024	1920	1898	[44]
CH ₂ Cl ₂	2022	1918	1897	[41]
ATR	2019	1981	1889	[38]

Tabela 6. Położenie pasm reprezentujących drania grup CO dla związku [ReCl(CO)₃(terpy-κ²N)].

Widmo IR drgań [ReCl(CO)₂(terpy- κ^3 N)] zawiera dwa pasma reprezentujące odpowiednio drgania symetryczne i niesymetryczne grup karbonylowych (Rysunek 15). Liczby falowe drgań zawierają się w zakresie 1891–1788 cm⁻¹ (Tabela 7), czyli są znacznie przesunięte w stronę mniejszych wartości w porównaniu ze związkiem, w którym 2,2':6',2"-terpirydyna koordynuje do jonu Re(I) w sposób dwukleszczowy (zakres 2024–1918 cm⁻¹). Tak znacznie przesunięcie jest spowodowane zastąpieniem silnie elektronoakceptorowej grupy karbonylowej przez pirydynę o wyraźnie słabszych właściwościach π -akceptorowych, w wyniku czego znacznie wzrasta gęstość elektronowa na centrum metalicznym [46]. W Tabeli 7 przedstawione zostały wartości liczb falowych drgań grup karbonylowych w widmach IR wykonanych różnymi metodami dla związku [ReCl(CO)₂(terpy- κ^3 N)]. W zależności od zastosowanej metody widać pewne różnice w położeniu pasm, jednak nadal obserwować można znaczne przesunięcie w stosunku do związku [ReCl(CO)₃(terpy- κ^2 N)].

Tabela 7. Położenie p	oasm reprezentuja	ących drania grup	karbonylowyc	h dla związku [Re	$Cl(CO)_2(terpy-\kappa^3N)].$
	Metoda	v(CO) cm ⁻¹	v(CO) cm ⁻¹	Literatura	
	CH ₃ CN	1891	1798	[43]	
	ATR	1872	1788	[38]	

Rysunek 15. Drgania dla związku [ReCl(CO)₂(terpy-κ³N)]: symetryczne (a) oraz niesymetryczne (b).

Charakterystyka właściwości termicznych została opisana w literaturze jedynie dla związku renu(I) z 2,2':6',2"-terpirydyną skoordynowaną do jonu centralnego w sposób dwukleszczowy. Związek ten w temperaturze 109°C ulega zeszkleniu. Stan szklisty nie jest stanem stabilnym, gdyż po dalszym ogrzewaniu następuje krystalizacja związku koordynacyjnego (T_c 241°C) i jego topnienie. Związek ten topi się bez rozkładu w temperaturze 263°C.

Dane literaturowe dotyczące parametrów elektrochemicznych, wyznaczonych głównie techniką woltamperometrii cyklicznej dla [ReCl(CO)₃(terpy- κ^2N)] i [ReCl(CO)₂(terpy- κ^3N)] zostały zestawione w Tabeli 8. Podano wartości potencjałów pików anodowych i katodowych, potencjał jonizacji (IP), który w przybliżeniu odpowiada energii orbitalu HOMO, powinowactwo elektronowe (EA) odpowiadające w przybliżeniu energii orbitalu LUMO oraz wielkość przerwy energetycznej pomiędzy orbitalami granicznymi.

elektronowego (EA) oraz przerwy energetycznej (E_g) dla związków renu(1) wykonanych w acetonitrylu.								
Związek	E _{Utl} ¹ [V]	E _{Utl} ² [V]	E _{Red} ¹ [V]	E _{Red} ² [V]	EA [eV]	IP [eV]	Eg [eV]	Literatura
[ReCl(CO) ₃ (terpy-κ ² N)]	0,786	_	-1,741	—	3,36	5,89	2,53	[44]
[ReCl(CO) ₂ (terpy-κ ³ N)]	0,48	1,22	-1,17	-1,34	3,93	5,58	1,65	[43]
$\mathbf{EA} = \left \mathbf{e}^{-} \right (5, 1 + \mathbf{E}_{\text{Red}}^{1}); \mathbf{IP} = \left \mathbf{e}^{-} \right (5, 1 + \mathbf{E}_{\text{Utl}}^{1}); \mathbf{Eg} = \mathbf{E}_{\text{Utl}}^{1} - \mathbf{E}_{\text{Red}}^{1}$								
Pomiary dla obydwu związków wykonano w roztworze acetonitrylu. Jako elektrolitu pomocniczego użyto 0,1 M								
[NBu4][PF6], a wzorzec wewnętrzny stanowił ferrocen o potencjale jonizacji Fc/Fc ⁺ wynoszącym -5,1 eV. Przy								
pomiarach dla [ReCl(CO) ₃ (terpy-κ ² N)] elektrodą pracującą była elektroda platynowa, a odniesienia srebrowa,								
a dla [ReCl(CO) ₂ (terpy- κ^3 N)] pracującą elektroda weglowa, odniesienia chlorosrebrowa i pomocniczą platynowa.								

Tabela 8. Wartości potencjałów piku anodowego i katodowego, potencjału jonizacji (IP), powinowactwa elektronowego (EA) oraz przerwy energetycznej (E₀) dla zwiazków renu(I) wykonanych w acetonitrylu.

Dla [ReCl(CO)₃(terpy- κ^2 N)] obserwujemy proces nieodwracalnego utleniania zachodzący na metalu (Re^I/Re^{II}). Związek ten wykazuje również odwracalny proces redukcji zlokalizowany na ligandzie oraz nieodwracalny proces na atomie renu (Re^I/Re⁰) [47,48]. Redukcja jonu metalu obserwowana jest przy wyższych wartościach potencjałów. Podobnie dla [ReCl(CO)₂(terpy- κ^{3} N)] pierwszy pik anodowy związany jest z procesem utleniania atomu metalu, jednak w przypadku tego związku jest to proces odwracalny. Na metalu zachodzi również proces nieodwracalnego utleniania Re^{II}/Re^{III} z pikiem przy 1,22 V. Nieodwracalny jest też proces redukcji zlokalizowany na ligandzie terpirydynowym [43]. Jak wynika z danych zawartych w Tabeli 9 sposób koordynacji 2,2':6',2"-terpirydyny ma znaczący wpływ na parametry elektrochemiczne. W przypadku związku koordynacyjnego renu(I) z 2,2':6',2"-terpirydyną skoordynowaną w sposób trójkleszczowy proces utlenienia zachodzi przy wyższych wartościach potencjału zatem jonizacji, jon centralny łatwiej ulega utlenieniu niż а W związku o koordynacji dwukleszczowej [43]. W porównaniu do [ReCl(CO)₃(terpy- κ²N)], związek $[\text{ReCl}(\text{CO})_2(\text{terpy}-\kappa^3\text{N})]$ charakteryzuje się niższą wartością EA (o 0,57 eV) i wyższą wartością IP (o 0.31 eV), a zatem wykazuje zmniejszona o 0.88 eV przerwę energetyczna.

Charakterystykę właściwości absorpcyjnych w zakresie UV-Vis związków [ReCl(CO)₃(terpy- κ^2 N)] i [ReCl(CO)₂(terpy- κ^3 N)] prezentuje Tabela 9 oraz Rysunek 16.

Tabela 9. Położenie maksimów p	asm absorpcji λ w nm dl	la związków renu(I) :	z 2,2':6',2"-terpirydyną.
--------------------------------	-------------------------	-----------------------	---------------------------

Związek	λ [nm]	Rozpuszczalnik	Literatura
	255 sh, 305, 374	MeCN	[41]
[ReCl(CO) ₃ (terpy- κ^2 N)]	220, 295, 378	CH ₂ Cl ₂	[49]
	258, 305, 393	CHCl ₃	[45]
[ReCl(CO) ₂ (terpy-κ ³ N)]	239, 271, 280, 321, 398, 466, 567 br., 689 br.	MeCN	[43]

Rysunek 16. Widmo absorpcji [ReCl(CO)₃(terpy-κ²N)] wykonane w CHCl₃ (a) [45] oraz [ReCl(CO)₂(terpyκ³N)] zmierzone w acetonitrylu (czarny), w CH₂Cl₂ (czerwony) oraz H₂O (niebieski) (b). Rysunek (b) zaadaptowano z literatury [39] za zgodą © Elsevier B.V. 2012.

W przypadku obydwu związków w obszarze 200–350 nm występują intensywne pasma odpowiadające spinowo dozwolonym przejściom ($\pi \rightarrow \pi^*$) w obrębie liganda IL. Pasma w zakresie widzialnym reprezentują natomiast przejścia elektronowe pomiędzy orbitalami *d* metalu a π^* orbitalami zlokalizowanymi na ligandzie terpirydynowym, a więc są to przejścia typu MLCT (*Metal-to-Ligand-Charge-Transfer*). W porównaniu do przejść typu IL, cechują się zdecydowanie niższym molowym współczynnikiem absorpcji. Ich cechą charakterystyczną jest natomiast ujemny solwatochromizm, manifestowany przesunięciem pasm MLCT w kierunku większych długości fali wraz ze spadkiem polarności rozpuszczalnika. W obszarze widzialnym obserwuje się wyraźne różnice pomiędzy [ReCl(CO)₂(terpy- κ ³N)] a [ReCl(CO)₃(terpy- κ ²N)]. W przypadku tego pierwszego związku pasmo MLCT jest bardzo szerokie, obejmuje prawie cały zakres widzialny widma.

Właściwości emisyjne związku [ReCl(CO)₃(terpy-κ²N)] zostały po raz pierwszy zbadane w 1988 roku przez zespół Alberto Jurisa. Związek ten został określony jako niewykazujący emisji w temperaturze pokojowej w roztworze DMF. Opisane natomiast zostały jego właściwości emisyjne w temperaturze 77K w mieszaninie DMF:CH2Cl2 w stosunku objętościowym 9:1. Maksimum emisji występowało przy długości fali 530 nm. a czas życia stanu wzbudzonego wynosił 3,4 μ s. [37] Brak emisji dla [ReCl(CO)₃(terpy- κ^2 N)] w roztworze w temperaturze pokojowej stał się główna przyczyną braku szerszego zainteresowania tą grupą związków. Sytuacja uległa zmianie po publikacji Dong Wanga z roku 2013 [49], w której zaprezentowano związki koordynacyjne renu(I) z ligandem terpirydynowym podstawionym w pozycji 4' karbazolem oraz difenyloamina. W rezultacie tej modyfikacji strukturalnej liganda organicznego otrzymane karbonylki renu(I) wykazywały fosforescencję w temperaturze pokojowej. W pracy tej przeprowadzono również pomiary właściwości emisyjnych związku wyjściowego [ReCl(CO)₃(terpy-κ²N)] w roztworze dichlorometanowym oraz w ciele stałym. Dzięki zastosowaniu nowocześniejszej i bardziej czułej aparatury pomiarowej niż ta, którą dysponował zespół Alberto Jurisa, stało się możliwym zarejestrowanie również emisji [ReCl(CO)₃(terpy- κ^2 N)] w CH₂Cl₂ i ciele stałym.

Właściwości emisyjne charakteryzujące związek [ReCl(CO)₃(terpy- $\kappa^2 N$)] w chloroformie, acetonitrylu oraz ciele stałym zostały także zbadane w naszym Zespole [45]. Wzbudzenie w paśmie MLCT spowodowało emisję o maksimum wynoszącym 665 nm dla roztworu chloroformowego i 656 nm dla roztworu acetonitrylowego. Natomiast emisja w ciele stałym zarejestrowana została przy maksimum wynoszącym 582 nm. Zostały również przeprowadzone badania absorpcji przejściowej dla [ReCl(CO)₃(terpy- $\kappa^2 N$)] w roztworze chloroformowym, które pozwoliły potwierdzić, że emisja następuje ze stanu ³MLCT, jak również wyznaczyć kinetykę procesu tworzenia się najniższego stanu trypletowego. Wzbudzenie w paśmie ¹MLCT powoduje zajście szybkiego przejścia międzysystemowego (Intersystem crossing, ISC) i utworzenia dwóch stanów trypletowych: jednego zlokalizowanego na ligandzie terpirydynowym ³IL oraz drugiego będacego stanem ³MLCT. Pierwszy z nich przechodzi w stan ³MLCT (t₂), który następnie ulega relaksacji (t₃). Najdłuższa składowa czasu zaniku t₄ dla (~3,2 ns) jest zgodna z czasem zaniku luminescencji związku [ReCl(CO)₃(terpy- κ^2 N)] w chloroformie. Zatem obserwowany w widmach absorpcji przejściowej (TA, Transient Absorption) stan odpowiada stanowi emisyjnemu. W widmach absorpcji przejściowej jest on reprezentowany przez dwa pasma o maksimach przy 376 i 485 nm (Rysunek 17). Pasmo o mniejszej długości fali odpowiada przejściom w obrębie rodnika terpy- powstałego w rezultacie przeniesienia ładunku w przejściu elektronowym ¹MLCT, a pasmo przy 485 nm przejściom Cl/terpy \rightarrow Re (typu LMCT, Ligand-to-Metal Charge Transfer) [45,50]. Wyraźne skrócenie czasu życia stanu ³MLCT związku [ReCl(CO)₃(terpy-κ²N)] w porównaniu z [ReCl(CO)₃(bpy)] (51 ns w CHCl₃) [50] przypisuje się obecności w ligandzie *terpy*- $\kappa^2 N$ nieskoordynowanego pierścienia pirydyny i wzrostowi drgań termicznych sprzyjających nieemisyjnej dezaktywacji stanu wzbudzonego.

Rysunek 17. Widmo absorpcji przejściowej dla [ReCl(CO)₃(terpy-κ²N)] w chloroformie (a) oraz składowe DAS z opowiadającymi im czasami zaniku wyznaczone przy zastosowaniu algorytmu analizy globalnej (b) [51].

Dla związku [ReCl(CO)₂(terpy-κ³N)] wykazującego przejście ¹MLCT obejmujące prawie cały zakres widzialny, emisja w roztworze nie została zarejestrowana. Opierając się na obliczaniach kwantowo-chemicznych dla tego związku przejście ¹MLCT z HOMO na LUMO występuje przy 715 nm. Obliczenia dla stanu trypletowego potwierdzają bezpromieniste przejście ze stanu wzbudzonego ³MLCT do stanu podstawowego. W temperaturze 77 K w mieszaninie metanolu:etanolu w stosunku objętościowym 4:1 związek ten wykazuje emisję

z maksimum dla 520 nm przy wzbudzeniu przy 358 nm (Rysunek 18(a)). Widmo emisyjne jest szerokim nieustrukturyzowanym pasmem, typowym dla stanu ³MLCT. Ze wzrostem temperatury od 77 K do 125 K obserwujemy przesunięcie maksimum emisji z 522 nm do 548 nm oraz utratę intensywności pasma emisji (Rysunek 18(b)) [43].

Rysunek 18. Widma emisji i wzbudzenia [ReCl(CO)₂(terpy-κ³N)] w temperaturze 77 K (a) oraz widma emisji tego związku w różnych temperaturach: T=77 K (linia ciągła), T=100 K (długa kreskowana linia), T=125 K (krótka kreskowana linia) oraz T=150 K (linia kropkowana) (b). Rysunek zaadaptowano z literatury [43] za zgodą © Royal Society of Chemistry 2015.

4. Kształtowanie właściwości fizykochemicznych karbonylowych związków renu(I) poprzez modyfikacje strukturalne liganda 2,2':6',2"-terpirydynowego

Właściwości fizykochemiczne i fotofizyczne związków 0 ogólnym wzorze fac-[ReL(CO)₃(N–N)]ⁿ⁺ (n = 0 lub 1, L = jony halogenowe, pseuohalogenowe, aromatyczne związki heterocykliczne) są funkcją elektronowych i sterycznych właściwości liganda organicznego (N-N) oraz liganda X [52-55]. Ligandy te poprzez efekt σ-donacji i efekt π -akceptorowy determinują strukture elektronową związku koordynacyjnego fac-[ReX(CO)₃(N-N)]ⁿ⁺, a ta określa ich właściwości fizykochemiczne, które z kolei decydują o ich zastosowaniach, w tym jako fotokatalizatory [56], środki do obrazowania komórkowego [57,58], leki przeciwnowotworowe [59,60] oraz materialy dla optoelektroniki, w tym organicznych diod elektroluminescencyjnych (OLED) [61,62].

Dzięki opracowaniu wydajnej metody syntezy (Kröhnke'go) umożliwiającej wprowadzanie szeregu modyfikacji w obrębie rdzenia 2,2':6',2"-terpirydyny stało się możliwym prowadzenie systematycznych badań w grupie karbonylowych związków renu(I) z tymi ligandami, a w konsekwencji racjonalne projektowanie i otrzymywanie nowych ulepszonych materiałów. Analiza zależności struktura liganda organicznego a właściwości optyczne związku koordynacyjnego jest kluczowa dla zrozumienia procesów transferu elektronów i energii spowodowanych absorpcją świata w związkach metali przejściowych.

32

W przejściowych projektowaniu związków metali Ζ pochodnymi liganda 2,2':6',2"-terpirydynowego wykorzystuje się zasadniczo dwie ścieżki modyfikacji. Pierwsza z nich polega na podstawieniu atomu wodoru w pozycji 4', zarówno w sposób bezpośredni lub z zastosowaniem łącznika, na przykład fenylowego lub naftylowego. Znane z literatury karbonylowe terpirydynowymi związki renu(I) Z ligandami funkcjonalizowanymi podstawnikami w pozycji 4' zebrano w Tabelach 10 i 11.

Tabela 10. Karbonylowe związki renu(I) typu [ReCl(CO)₂(R-terpy- κ^3 N)].

Tabela 11. Karbonylowe związki renu(I) typu [ReCl(CO)₃(R-terpy-κ²N)].

Druga możliwa droga modyfikacji liganda terpirydynowego jest realizowana poprzez pirydylowych 2,2':6',2"-terpirydyny zamianę bocznych pierścieni innymi pięciolub sześcioczłonowymi grupami heterocyklicznymi. W syntezie karbonylowych związków głównie stosowane pochodne 2,6-di(pirazyn-2-ylo)pirydyny renu(I) były (*dppy*) oraz 2,6-di(tiazol-2-ylo)pirydyny (dtpy), i to właśnie te układy zostały poddane szczegółowej analizie w tym rozdziale. Z ligandami na bazie dppy i dtpy zostały otrzymane jedynie związki [ReCl(CO)₃(R-dppy-κ²N)] oraz [ReCl(CO)₃(R-dtpy-κ²N)], w których pochodne 2,6-di(pirazyn-2-ylo)pirydyny oraz 2,6-di(tiazol-2-ylo)pirydyny koordynują do jonu Re(I) w sposób bidentny. Znane z literatury związki tego typu przedstawiono w Tabelach 12 i 13.

Syntezy związków renu(I) z pochodnymi 2,2':6',2"-terpirydyny prowadzi się w sposób analogiczny do tych opisanych dla [ReCl(CO)₃(terpy- κ^2 N)] i [ReCl(CO)₂(terpy- κ^3 N)]. Pierwsze z nich otrzymuje się w reakcji Re(CO)₅Cl i odpowiedniej pochodnej 2,2':6',2"-terpirydyny, 2,6-di(pirazyn-2-ylo)pirydyny lub 2,6-di(tiazol-2-ylo)pirydyny zmieszanych w stosunku molowym 1:1 z wykorzystaniem jako rozpuszczalnika acetonitrylu, toluenu lub chloroformu. Z kolei związki [ReCl(CO)₂(R-terpy- κ^3 N)] syntezuje się z [ReCl(CO)₃(R-terpy- κ^2 N)] poprzez ich ogrzewanie w zamkniętych ampułach w temperaturze ~300°C.

Zależności pomiędzy strukturą liganda organicznego a właściwościami jego związku z renem(I) omówiłam w podrozdziałach poniżej, dyskutując kolejno wpływ modyfikacji 2,2':6',2"-terpirydyny na parametry strukturalne, położenia pasm rozciągających v_{CO} w widmach IR, wartości potencjału jonizacji (IP) i powinowactwa elektronowego (EA) oraz właściwości termiczne, absorpcyjne i emisyjne związków koordynacyjnych renu(I) otrzymanych z wykorzystaniem tych ligandów triiminowych. Wszystkie podane parametry lub właściwości silnie zależą od struktury elektronowej związku koordynacyjnego, a zatem ich analiza jest kluczowa dla racjonalnego projektowania i otrzymywania związków koordynacyjnych renu(I) o pożądanych parametrach funkcjonalnych, istotnych dla poszczególnych typów zastosowań.

4.1. Modyfikacje 2,2':6',2"-terpirydyny a parametry strukturalne karbonylowych związków renu(I)

Analiza danych strukturalnych karbonylków renu(I) [ReCl(CO)₃(R-terpy- κ^2 N)] dla których zostały otrzymane monokryształy i przeprowadzone badania rentgenostrukturalne potwierdza, że wprowadzenie do rdzenia 2,2':6',2"-terpirydyny podstawnika w pozycji 4', zarówno w sposób bezpośredni jak i poprzez łącznik, nie zmienia znacząco wartości długości wiązań i miar kątów w obrębie jednostki koordynacyjnej {ReClN₂C₃}. Długości wiązań i miar kątów dla wybranych karbonylków [ReCl(CO)₃(R-terpy- κ^2 N)] zebrano w Tabeli 14.

R	OH		s			C
Literatura	[63]	۶ [64]	[65]	[49]	[66]	§ [66]
	Długości wiazań [Å]					
Re-C1	1,929(9)	1.941(8)	1.920(8)	1.922(10)	1,925(8)	1,929(8)
Re–C2	1,905(8)	1,887(6)	1,888(7)	1,894(9)	1,922(7)	1,898(7)
Re-C3	1,910(8)	1,882(9)	1,897(7)	1,884(9)	1,884(8)	1,969(8)
Re-N1	2,152(7)	2,179(5)	2,170(5)	2,185(6)	2,173(6)	2,174(5)
Re-N2	2,216(6)	2,223(5)	2,219(5)	2,209(6)	2,200(5)	2,231(5)
ReCl	2,5189(19)	2,4862(17)	2,4828(16)	2,481(1)	2,4995(17)	2,4650(18)
C101	1,162	1,136(9)	1,153(8)	1,168	1,159(9)	1,156(8)
C2–O2	1,157	1,161(7)	1,153(9)	1,177	1,130(8)	1,156(8)
C3–O3	1,148	1,157(9)	1,148(8)	1,155	1,167(9)	1,065(8)
	Miary kątów [°]					
C2–Re–C1	86,8(4)	87,4(3)	86,8(3)	85,2(3)	87,9(3)	86,5(3)
C3–Re–C1	89,2(3)	88,8(3)	89,2(3)	90,1(4)	88,5(3)	93,7(3)
C3–Re–C2	87,1(3)	86,9(3)	86,4(3)	86,0(4)	88,6(3)	90,7(3)
C1–Re–N1	172,8(3)	174,6(2)	174,5(2)	175,1(3)	175,2(3)	175,3(2)
C2–Re–N1	96,7(3)	96,1(2)	96,8(2)	98,0(3)	96,1(3)	95,1(2)
C3–Re–N1	97.3(3)	95,6(3)	95,1(2)	93,7(3)	94,1(3)	90,7(3)
C1–Re–N2	101,4(3)	101,7(2)	101,8(2)	101,7(3)	101,7(2)	103,2(2)
C2–Re–N2	171,3(3)	170,3(3)	171,0(2)	172,3(3)	168,4(2)	169,5(2)
C3–Re–N2	96,0(3)	96,4(2)	96,3(2)	97,3(3)	98,1(3)	92,7(2)
N1-Re-N2	74,9(3)	74,58(17)	74,44(16)	74,9(2)	74,03(19)	74,97(19)
C1–Re–Cl	90,5(3)	91,5(2)	92,4(2)	91,8(2)	93,6(2)	91,0(2)
C2–Re–Cl	94,6(2)	93,5(2)	93,4(2)	94,4(3)	91,8(2)	90,5(2)
C3-Re-Cl	178,2(2)	179,5(2)	178,4(2)	178,2(3)	177,8(2)	175,2(2)
N1-Re-Cl	82,93(18)	84,09(13)	83,27(12)	84,44(17)	83,71(14)	81,62(14)
N2-Re-Cl	82,36(18)	83,14(13)	83,61(12)	82,14(16)	81,12(13)	85,39(13)

Tabela 14. Długości wiązań (w Å) oraz miary kątów (w °) dla związków koordynacyjnych [ReCl(CO)₃(R-terpy- κ^2 N)] z ligandem *terpy* zmodyfikowanym odpowiednim podstawnikiem R.

Również zastąpienie rdzenia 2,2':6',2"-terpirydyny (*terpy*) przez 2,6-di(pirazyn-2ylo)pirydynę (*dppy*) oraz 2,6-di(tiazol-2-ylo)pirydynę (*dtpy*) nie prowadzi do znaczących zmian długości wiązań i kątów między wiązaniami w obrębie jednostki koordynacyjnej {ReClN₂C₃}, co dobrze ilustrują dane zawarte w Tabeli 15 dla związków koordynacyjnych renu(I) z wymienionymi powyżej ligandami zmodyfikowanymi podstawnikiem fenylowym w pozycji 4'.
lerpy, alpy	<i>terpy, appy 1 appy 2</i> mody11kowanymi podstawnikiem tenytowym [04].									
	[ReCl(CO) ₃	[ReCl(CO) ₃	[ReCl(CO) ₃							
	(Ph-terpy-κ ² N)]	(Ph-dppy-κ ² N)]	(Ph-dtpy-κ ² N)]							
		Długości wiązań [Å]								
Re-C1	1,941(8)	1,935(6)	1,913(8)							
Re–C2	1,887(6)	1,896(6)	1,912(10)							
Re–C3	1,882(9)	1,889(6)	1,911(9)							
Re–N1	2,179(5)	2,160(4)	2,157(5)							
Re–N2	2,223(5)	2,198(4)	2,244(6)							
ReCl	2,4862(17)	2,4988(13)	2,480(2)							
C101	1,136(9)	1,137(7)	1,152(8)							
C2–O2	1,161(7)	1,148(7)	1,153(10)							
C3–O3	1,157(9)	1,158(7)	1,138(10)							
	Miary kątów [°]									
C2–Re–C1	87,4(3)	88,3(2)	88,7(4)							
C3–Re–C1	88,8(3)	89,5(2)	90,(3)							
C3–Re–C2	86,9(3)	87,6(2)	88,3(4)							
C1–Re–N1	174,6(2)	173,55(19)	171,6(3)							
C2–Re–N1	96,1(2)	96,62(19)	94,1(3)							
C3–Re–N1	95,6(3)	94,88(18)	97,6(3)							
C1–Re–N2	101,7(2)	100,27(19)	102,2(3)							
C2–Re–N2	170,3(3)	169,56(18)	169,0(3)							
C3–Re–N2	96,4(2)	98,4(2)	92,6(3)							
N1-Re-N2	74,58(17)	74,42(14)	74,9(2)							
C1–Re–Cl	91,5(2)	92,58(19)	89,0(2)							
C2–Re–Cl	93,5(2)	91,63(17)	95,7(3)							
C3–Re–Cl	179,5(2)	177,75(15)	175,9(3)							
N1-Re-Cl	84,09(13)	83,12(11)	82,92(17)							
N2-Re-Cl	83,14(13)	82,09(11)	83,57(15)							

Tabela 15. Długości wiązań w Å oraz miary kątów w ° dla związków koordynacyjnych renu(I) z ligandami *terpy, dtpy* i *dppy* zmodyfikowanymi podstawnikiem fenylowym [64].

Analiza strukturalna tych układów pozwala jedynie zauważyć wyraźne różnice w wartościach kątów dwuściennych pomiędzy płaszczyznami podstawnika R i centralnego pierścienia pirydylowego liganda terpy (kąt A w tabelach 16 i 17) oraz kątów skrętu pierścienia nieskoordynowanego pirydylowego względem płaszczyzny utworzonej przez centralną pirydynę (kąt B w tabelach 16 i 17). Niemniej jednak wartości tych kątów silnie oddziaływań występujących w sieci krystalicznej, zależą od szeregu zarówno wewnątrzcząsteczkowych jak i międzycząsteczkowych, a nie są tylko uwarunkowane wprowadzonym podstawnikiem.

 Tabela 16. Miary kątów dwuściennych (wyrażonych w °) dla związków koordynacyjnych renu(I) typu

 [ReCl(CO)₃(R-terpy-κ²N)].

	OH		s		Z - C	0 June
Kạt A [°]	14,37	10,84	6,35	19,01	19,47	19,89
Kat B [°]	59,23	50,25	50,83	54,31	50,03	61,85

	[ReCl(CO) ₃ (Ph-terpy-κ ² N)]	[ReCl(CO) ₃ (Ph-dppy-κ ² N)]	[ReCl(CO) ₃ (Ph-dtpy-κ ² N)]
Kąt A [°]	10,84	17,77	6,68
Kąt B [°]	50,25	48,22	59,34

Tabela 17. Miary kątów dwuściennych (wyrażonych w °) dla związków [ReCl(CO)₃(Ph-terpy- κ^2 N)],[ReCl(CO)₃(Ph-dpy- κ^2 N)] i [ReCl(CO)₃(Ph-dtpy- κ^2 N)].

4.2. Modyfikacje strukturalne 2,2':6',2"-terpirydyny a położenia pasm rozciągających v_{CO} w widmach IR karbonylków renu(I)

Autorzy pracy "*Gauging Donor/Acceptor Properties and Redox Stability of Chelating Click-Derived Triazoles and Triazolylidenes: A Case Study with Rhenium(I) Complexes*" w Inorganic Chemistry [67] wykazali, że widmo drgań oscylacyjnych w zakresie podczerwieni dostarcza nie tylko informacji o lokalnej symetrii związku koordynacyjnego [ReCl(CO)₃(N–N)] poprzez obserwowalną ilość pasm pochodzących od drgań grup karbonylowych, ale pozwala także wstępnie wnioskować o mocy donorowej liganda organicznego, i tym samym o gęstości elektronowej na centrum metalicznym. Autorzy pracy powiązali moc donorową liganda (będącą wypadkową jego właściwości σ -donorowych i π -acceptorych) ze średnią arytmetyczną z liczb falowych drgań oscylacyjnych dla grup karbonylowych.

Wiązanie $\sigma(M-CO)$ tworzy się w wyniku nakładania się najwyżej zajętego niewiążącego orbitalu cząsteczki CO, zlokalizowanego głównie na atomie węgla i zajętego przez wolną parę elektronową, z pustym orbitalem atomu metalu. Zgodnie z teorią Dewara-Chatta-Duncansona, w efekcie tworzenia wiązania M-CO następuje także przeniesienie gęstości elektronowej zlokalizowanej na orbitalach d_π jonu metalu na orbitale antywiążące π* tlenku węgla (z ang. *back-donation*, wiązanie typu π). Wymienione powyżej oddziaływania są synergiczne. Przesunięcie gęstości elektronowej z metalu na orbitale CO powoduje, że cząsteczka CO staje się jako całość bardziej ujemna i wzrasta jej zasadowość w tworzeniu wiązania σ z metalem. Z kolei, przesunięcie ładunku ujemnego z atomu węgla cząsteczki CO na orbitale metalu w wiązaniu σ powoduje, że cząsteczka CO staje się bardziej dodatnia, co zwiększa zdolność akceptorową orbitali π*. Wynikiem tego jest wzrost siły wiązania σ dzięki wzrostowi trwałości wiązania π i na odwrót [68].

Wykorzystując podejście Autorów publikacji w Inorganic Chemistry [67] dokonałam analizy porównawczej w grupach związków [ReCl(CO)₃(R-terpy- κ^2 N)] i [ReCl(CO)₂(R-terpy- κ^3 N)]. Średnia wartość liczb falowych trzech drgań oscylacyjnych związku [ReCl(CO)₃(terpy- κ^2 N)] wynosi 1937 cm⁻¹, a wyniki badań spektroskopowych w zakresie podczerwieni dla [ReCl(CO)₃(R-terpy-κ²N)] zebrano w Tabeli 18. Na Rysunku 19 natomiast przedstawiono uszeregowanie podstawników obrazujące wzrost średniej arytmetycznej z liczb falowych drgań oscylacyjnych grup karbonylowych związków [ReCl(CO)₃(R-terpy-κ²N)].

		/]						
R		Z		G	2-		CH _S	CH ₃
Drgania	2018	2014	2021	2023	2019	2019	2022	2019
[om-1]	1916	1902	1899	1944	1924	1916	1936	1911
	1876	1873	1887	1911	1892	1880	1910	1885
Średnia [cm ⁻¹]	1937	1930	1936	1959	1945	1938	1956	1938
Literatura	[64]	[69]	[66]	[66]	[70]	[70]	[71]	[71]

Tabela 18. Wartości liczb falowych drgań oscylacyjnych grup karbonylowych (w cm⁻¹) dla związków [ReCl(CO)₃(R-terpy- κ^2 N)]. Widma IR wszystkich związków zostały wykonane techniką pastylek z KBr.

Wzrost średniej wartości vco

Rysunek 19. Podstawniki R uszeregowane według wzrastającej średniej arytmetycznej z liczb falowych drgań oscylacyjnych grup karbonylowych w związkach [ReCl(CO)₃(R-terpy-κ²N)].

Zdecydowany wzrost średniej wartości v_{CO} , wskazujący na wzrost energii wiązania karbonylowego obserwuje się dla podstawników fenylowych dekorowanych silnie elektroujemnymi grupami. Terpirydynowe związki renu(I) zawierające jako podstawniki fenyl i bifenyl charakteryzują się prawie identyczną średnią wartością v_{CO} co związek [ReCl(CO)₃(terpy- κ^2 N)], a w przypadku podstawnika 2-pirydylowego następuje nieznaczne przesunięcie w kierunku mniejszych wartości. Na uwagę zasługuje również wyraźna różnica w średniej częstości drgań dla związków z podstawnikami 4-metoskyfenylowym i 4-metoskynaftylowym. Zdecydowanie niższą (o 18 cm⁻¹) średnią wartością v_{CO} charakteryzuje się ten drugi, co wskazuje, że łącznik naftylowy sprzyja przeniesieniu gęstości elektronowej z metalu na grupy karbonylowe.

Zastąpienie zewnętrznych pierścieni pirydylowych w 2,2':6',2"-terpirydynie pierścieniami pirazyny lub tiazolu powoduje zmiany w położeniu pasm opisujących drgania grup karbonylowych. Wykorzystując średnie wartości liczb falowych drgań grup karbonylowych podane w Tabeli 19 zauważa się następujące zależności:

• w przypadku podstawników fenylowego, 4-(N-piperydylo)-fenylowego oraz 4-(N-difenyloamino)-fenylowego następuje wzrost średniej wartości v_{CO} w szeregu terpy < dtpy < dppy;

• dla podstawników 4-(N-dimetyloamino)-fenylowego i 4-metoksyfenylowego wzrost średniej wartości v_{CO} następuje w kolejności *dtpy < dppy < terpy*;

dla podstawnika 4-metoksy-1-naftalenowego najniższą średnią wartość v_{CO} osiąga związek z pochodną *terpy*, a najwyższą z pochodną *dtpy*.

Nie obserwuje się zatem jednego trendu zmian w zależności od rodzaju rdzenia. O położeniu drgań rozciągających w dyskutowanych związkach renu(I) decyduje "wypadkowa" właściwości σ -donorowych i π -acceptorych zarówno podstawnika jak i rdzenia.

R Rdzeń		CH3	CH ₃		Z	
Literatura	[64]	[7	'1]		[70]	
	2018	2022	2019	2019	2019	2023
terpy	1916	1936	1911	1924	1916	1904
	1876	1910	1885	1892	1880	1872
średnia	1937	1956	1938	1945	1938	1933
	2030	2026	2023	2021	2025	2025
dppy	1932	1936	1915	1923	1933	1931
	1880	1898	1896	1885	1887	1894
średnia	1947	1953	1945	1943	1948	1950
	2021	2020	2032	2019	2022	2021
dtpy	1913	1908	1924	1914	1918	1925
	1887	1896	1894	1880	1893	1884
średnia	1940	1941	1950	1938	1944	1943

Tabela 19. Wartości liczb falowych drgań oscylacyjnych grup CO (w cm⁻¹) dla [ReCl(CO)₃(R-terpy- κ^2 N)], [ReCl(CO)₃(R-dtpy- κ^2 N)] i [ReCl(CO)₃(R-dpy- κ^2 N)]. Widma IR zostały wykonane techniką pastylek z KBr.

W widmach IR dla związków typu [ReCl(CO)₂(R-terpy- κ^3 N)] z ligandem terpirydynowym o trójkleszczowym sposobie koordynacji widoczne są dwa drgania pochodzące od grup karbonylowych, co dyskutowano już w rozdziale 3. Dla związków koordynacyjnych [ReCl(CO)₂(R-C₆H₄-terpy- κ^3 N)] opisanych w literaturze i zebranych tabeli 20 i na Rysunku 20 nie ma możliwości dokonania porównania ze związkiem wyjściowym [ReCl(CO)₂(terpy- κ^3 N)] gdyż pomiary dla związków zmodyfikowanych wykonane zostały inną techniką. Porównania można dokonać jednak względem [ReCl(CO)₂(Ph-terpy- κ^{3} N)]. Analiza danych pozwala stwierdzić brak wyraźnego wpływu podstawnika wprowadzanego do pierścienia fenylowego na położenie pasm rozciągających grup karbonylowych [ReCl(CO)₂(R-C₆H₄-terpy- κ^{3} N)]. Średnie wartości v _{CO} dla tych związków mieszczą się w waskim przedziale 1854–1859 cm⁻¹.

R		CN	CF3	Br	CH3	Z
Drgania [cm ⁻¹]	1892,4 1821,8	1893,6 1823,8	1893,5 1823,5	1893,0 1822,8	1891,6 1820,6	1890,0 1818,2
Średnia [cm⁻¹]	1857,1	1858,7	1858,5	1857,9	1856,1	1854,1

Tabela 20. Wartości liczb falowych drgań oscylacyjnych grup karbonylowych (w cm⁻¹) dla związków [ReCl(CO)₂(R-terpy-κ³N)]. Wszystkie widma zostały zarejestrowane w roztworze DMF [46].

Rysunek 20. Widma FT-IR wykonane w DMF dla związków typu [ReCl(CO)₂(R-terpy-κ³N)]. Rysunek zaadaptowano z literatury [46] za zgodą © American Chemical Society 2021.

W porównaniu jednak z [ReCl(CO)₃(R-C₆H₄-terpy- $\kappa^{2}N$)] charakteryzują się one dużo mniejszymi liczbami falowymi. Gęstość elektronowa z jonu metalu na orbitale π^{*}_{CO} jest w tym przypadku przekazywana na dwa, a nie trzy ligandy karbonylkowe. Obserwowane silne przesunięcie v_{CO} w porównaniu z [ReCl(CO)₃(R-C₆H₄-terpy- $\kappa^{2}N$)] może zatem wskazywać na zwiększoną gęstość elektronową obecną na atomie renu(I) w [ReCl(CO)₂(R-C₆H₄-terpy- $\kappa^{3}N$)] [72].

4.3. Modyfikacje strukturalne 2,2':6',2"-terpirydyny a wartości potencjału jonizacji i powinowactwa elektronowego karbonylków renu(I)

Wartości potencjału jonizacji (IP) oraz powinowactwa elektronowego (EA), wyznaczone w oparciu o wartości potencjału odpowiadającego początkowi narastania pierwszego piku utlenienia oraz pierwszego piku redukcji

$$IP = E_{oxonset} - 5,1$$
$$EA = E_{redonset} + 5,1$$

w przybliżeniu odpowiadają odpowiednio energii orbitalu HOMO i energii orbitalu LUMO [73]. Wynika to z faktu, że w procesie utlenienia następuje usunięcie elektronu z zajętego orbitalu o najwyższej energii (HOMO), a w procesie redukcji elektron obsadza najniżej energetyczny pusty orbital. Wartość -5,1 [eV] w podanych wzorach to potencjał półfali dla ferrocenu. Znajomość energii poziomów HOMO i LUMO oraz przerwy energetycznej związku jest istotna w kontekście jego zastosowań w optoelektronice.

W Tabeli 21 zebrano dane literaturowe dotyczące potencjału jonizacji (IP), powinowactwa elektronowego (EA) oraz wielkości przerwy energetycznej HOMO-LUMO. Wszystkie pomiary wykonano w argonowanym roztworze acetonitrylowym z dodatkiem 0,1 M NBu₄PF₆ lub NBu₄BF₄ jako elektrolitu pomocniczego. Elektrodą pracującą była szklana elektroda węglowa lub elektroda platynowa. Jako wzorca wewnętrznego użyto ferrocenu, którego potencjał jonizacji Fc/Fc⁺ wynosi w próżni -5,1 eV.

			a de la constante de la consta	CH ₃	CH3	CH ₃	Z
Oznaczenie	1 ^[64]	2 ^[66]	3 ^[66]	4 ^[71]	5 ^[71]	6 ^[71]	7 ^[70]
E _{utl} [V]	0,78 0,91 1,07	0,76	0,75 1,12	0,86 1,15	0,93 1,18 1,35	0,86 1,13 1,31	0,54
E _{red} [V]	-1,73 -2,04	-1,76	-1,75 -2,23	-1,66 -2,13 -2,40	-1,64 -2,10 -2,37	-1,67 -2,10 -2,23	-1,76
EA [eV]	3,49	3,47	3,47	3,59	3,59	3,58	3,34
IP [eV]	5,78	5,70	5,69	5,87	5,89	5,88	5,64
E _g [eV]	2,29	2,23	2,22	2,28	2,30	2,30	2,30
	Z()			× ×	N N	-N -N	
Oznaczenie	8 ^[70]	9 ^[70]	10 ^[69]	11 ^[69]	12 ^[69]	13 ^[65]	14 ^[65]

Tabela 21. Wartości potencjału jonizacji (IP), powinowactwa elektronowego (EA), przerwy energetycznej (Eg) i wartości pików redukcji i utlenienia wyrażonych w elektronowoltach dla związków [ReCl(CO)₃(R-terpy- $\kappa^2 N$)].

E _{utl} [V]	0,52	0,66	1,14	0,93	0,94	0,77 1,22 0,80	
E _{red} [V]	-1,74	-1,72	-1,38 -1,66	-1,55 -1,84	-1,56 -1,83	-1,46 -1,28 -1,77 -1,71	
EA [eV]	3,36	3,38	3,92	3,70	3,69	3,90	3,95
IP [eV]	5,62	5,76	6,05	5,93	5,88	5,74	5,79
E _g [eV]	2,26	2,38	2,13	2,23	2,19	1,84	1,84
	s	s s			z	[ReCl(CO)3(1	erpy-κ²N)] ^[44]
Oznaczenie	15 ^[65]	16 ^[65]	17 ^[74]	18 ^[51]	19 ^[51]		
E _{utl} [V]	0,72 1,07	0,71 1,06	0,71 0,86	0,75	0,75	0,7	786
E _{red} [V]	-1,35 -1,70	-1,37 -1,70	-1,78 -2,04	-1.85	-1,78	-1,	741
EA [eV]	3,89	3,86	3,45	3,37	3,45	3,	36
IP [eV]	5,70	5,68	5,68	5,75	5,67	5,	89
E _g [eV]	1,81	1,82	2,24	2,38	2,22	2,	53
		$\mathbf{E}\mathbf{A} = \left \mathbf{e}^{-} \right (5,$	$1+E_{\text{Red}}^{1}$; IP = $ e $	$(5,1+E_{Utl}^{1}); E$	$\mathbf{g} = \mathbf{E}_{\mathrm{Utl}}^{1} - \mathbf{E}_{\mathrm{Red}}^{1}$		

Analiza danych zawartych w Tabeli 21 potwierdza, że poprzez wprowadzanie podstawników w pozycję 4' liganda 2,2':6',2''-terpirydyny można wpływać na wartości potencjału jonizacji i powinowactwa elektronowego karbonylków renu(I). W oparciu o podane dane można zauważyć, że:

wszystkie przedstawione w Tabeli 21 związki wykazują zmniejszenie przerwy energetycznej pomiędzy orbitalami granicznymi w porównaniu z [ReCl(CO)₃(terpy-κ²N)];

• poziom HOMO w wyniku podstawienia liganda *terpy* w związkach typu [ReCl(CO)₃(R-terpy- κ^2 N)] ulega destabilizacji względem związku [ReCl(CO)₃(terpy- κ^2 N)], za wyjątkiem zastosowania podstawników 2- i 3-pirydylowych powodujących stabilizację oraz 4-pirydylowego i podstawników z grupami metoksy, które nie wywierają wyraźnego wpływu na ten poziom energetyczny;

w porównaniu z [ReCl(CO)₃(terpy-κ²N)] większość związków przedstawionych w Tabeli 21 cechuje się niższą energią poziomu LUMO;

• modyfikacja pierścienia fenylowego w $[ReCl(CO)_3(Ph-terpy-\kappa^2N)]$ grupą fenylową lub atomem chloru (wprowadzonymi w pozycje para) powoduje jedynie nieznaczną destabilizację poziomu HOMO, w efekcie czego następuje minimalne zmniejszenie przerwy energetycznej w porównaniu z $[ReCl(CO)_3(Ph-terpy-\kappa^2N)]$;

 zastąpienie atomu chloru w [ReCl(CO)₃(Cl-C₆H₄-terpy-κ²N)] bardziej elektroujemną grupą metoksy prowadzi do wyraźnej stabilizacji poziomów HOMO

i LUMO, ale wartość przerwy energetycznej pozostaje bez zmian w porównaniu z [ReCl(CO)₃(Ph-terpy-κ²N)];

• w grupie podstawników arylowych z grupą metoksy zamiana grypy fenylowej grupą 1-naftylo lub 2-naftylo nie ma wpływu na wartości IP i EA;

wprowadzenie podstawników będących aminami alifatycznymi i acyklicznymi w pozycję para pierścienia fenylowego związku [ReCl(CO)₃(Ph-terpy-κ²N)] skutkuje destabilizacją poziomów HOMO i LUMO, ale wartość przerwy energetycznej pozostaje prawie bez zmian w porównaniu z [ReCl(CO)₃(Ph-terpy-κ²N)];

• przyłączenie grupy difenyloamino (aminy aromatycznej) do pierścienia fenylowego w pozycję para prowadzi jedynie do destabilizacji poziomu LUMO w porównaniu [ReCl(CO)₃(Ph-terpy- κ^2 N)], w efekcie czego obserwuje się wzrost przerwy energetycznej z 2,29 eV dla [ReCl(CO)₃(Ph-terpy- κ^2 N)] do 2,38 eV dla [ReCl(CO)₃(Ph₂N-Ph-terpy- κ^2 N)];

zastąpienie natomiast grupy fenylowej podstawnikiem pirydylowym (podstawnik
 2-, 3- lub 4-pirydylowy) skutkuje wyraźną stabilizacją poziomów HOMO i LUMO,
 zdecydowanie większą niż w przypadku związku Re(I) z 2,2':6',2"-terpirydyny podstawioną
 grupą metoksy. W tym przypadku następuje również zmniejszenie przerwy w porównaniu
 z [ReCl(CO)₃(Ph-terpy-κ²N)];

• położenie atomu azotu podstawnikiem pirydylowym (2-, 3- lub 4-pirydylo) ma wpływ na wartości energii poziomów HOMO i LUMO. Podstawnik 2-pirydylo zapewnia największą stabilizację poziomów HOMO i LUMO a zarazem najmniejszą przerwę energetyczną HOMO-LUMO;

podstawniki heterocykliczne: N-metylopirolowy, furanowy, tiofenowy oraz bitiofenowy prowadzą do znacznej stabilizacji poziomu LUMO, porównywalną do tej wywoływanej przez podstawnik 2-pirydylowy, natomiast w porównaniu ze związkiem [ReCl(CO)₃(Ph-terpy-κ²N)] poziom HOMO jest w niewielkim stopniu destabilizowany lub niezmieniony. Przerwa energetyczna dla tych związków jest najmniejsza ze wszystkich wymienionych w Tabeli 21, a w porównaniu ze związkiem z grupą fenylową o około 0,40 eV mniejsza;

• podstawniki 2-chinolinowy, N-etylo-3-karbazolowy oraz 4-(N-karbazolo)fenylowy powodują destabilizację poziomów HOMO oraz LUMO w porównaniu ze związkiem [ReCl(CO)₃(Ph-terpy- κ^2 N)]. Przerwa energetyczna jest mniejsza dla związków z podstawnikami 4-(N-karbazolo)-fenylowym oraz 2-chinolinowym.

Na Rysunku 21 przedstawiono wykres pozwalający na porównanie energii poziomów HOMO i LUMO z energiami granicznych orbitali molekularnych oraz pracami wyjścia dla odpowiednich elementów wchodzących w skład diod elektroluminescencyjnych, a więc PVK, PBD, PEDOT:PSS oraz Al i ITO. Jak wynika z danych zestawionych na wykresie poziomy HOMO oraz LUMO są dobrze dopasowane zarówno do pracy wyjścia odpowiednich komponentów diod, a także do energii granicznych orbitali molekularnych, co pozwala wnioskować, że omawiane związki są dobrymi kandydatami do zastosowań w diodach elektroluminescencyjnych.

Rysunek 21. Porównanie poziomów orbitali HOMO i LUMO dla związków [ReCl(CO)₃(R-terpy-κ²N)] podanych w tabeli 21 z pracami wyjścia dla odpowiednich elementów diod elektroluminescencyjnych.

Wpływ rdzenia triiminowego na wartości potencjału jonizacji (IP), powinowactwa elektronowego (EA) i przerwy energetycznej można omówić dokonując analizy wyników dla związków zestawionych w Tabeli 22. Dla wszystkich tych połączeń pomiary elektrochemiczne zostały przeprowadzone w tych samych warunkach eksperymentalnych.

	terpy			dtpy			dppy			
R	EA [eV]	IP [eV]	Eg [eV]	EA [eV]	IP [eV]	Eg [eV]	EA [eV]	IP [eV]	Eg [eV]	Literatura
	3,49	5,78	2,29	3,63	5,89	2,26	3,85	5,67	1,82	[64]
O CH ₅	3,59	5,87	2,28	3,63	5,94	2,31	3,96	6,11	2,15	[71]
CH ₅	3,59	5,89	2,30	3,70	6,02	2,32	3,87	6,01	2,14	[71]

Tabela 22. Wartości potencjału jonizacji (IP), powinowactwa elektronowego (EA) i przerwy energetycznej (E_g) w eV dla związków [ReCl(CO)₃(R-terpy-κ²N)], ReCl(CO)₃(R-dtpy-κ²N)] i ReCl(CO)₃(R-dpy-κ²N)].

ξ	EA =	$ e^{-} (5,$	1+E _{Red} ¹); IP =	e ⁻ (5,1	+ E_{Utl}^{1} ;	$Eg = E_t$	Jtl ¹ -E _{Red}	1	
	3,45	5,67	2,22	3,59	5,76	2,17	3,74	5,87	2,13	[51]
	3,37	5,75	2,38	3,57	5,87	2,30	3,72	5,88	2,16	[51]
	3,45	5,68	2,24	3,51	5,76	2,25	3,78	5,65	1,87	[74]
	3,69	5,88	2,19	3,82	5,94	2,12	_	_	_	[69,75]
	3,70	5,93	2,23	3,53	5,93	2,40	_	_	_	[69,75]
N N	3,92	6,05	2,13	3,63	5,98	2,35				[69,75]
	3,38	5,76	2,38	3,56	5,75	2,19	3,69	5,74	2,05	[70]
× →	3,36	5,62	2,26	3,51	5,64	2,13	3,72	5,64	1,92	[70]
× ×	3,34	5,64	2,30	3,49	5,67	2,18	3,68	5,67	1,99	[70]
CH ₅	3,58	5,88	2,30	3,71	5,94	2,23	3,86	6,03	2,17	[71]

Wszystkie karbonylki renu(I) z pochodnymi 2,6-di(pirazyn-2-ylo)pirydyny (*dppy*) cechują się niższymi wartościami przerwy energetycznej HOMO–LUMO. Za wyjątkiem związków z podstawnikami 2-pirydylowym i 3-pirydylowym, obserwuje się również obniżenie energii LUMO w karbonylkach renu(I) w rezultacie podstawienia bocznych pierścieni liganda 2,2':6',2"-terpirydyny pierścieniami tiazolu lub pirazyny. Wytłumaczyć to można wzrostem

właściwościami elektrono-akceptorowymi liganda triiminowego w rezultacie wprowadzenia dodatkowych atomów donora - siarki w przypadku dtpy lub azotu dla dppy. W pozostałych parametrach elektrochemicznych nie ma jednego kierunku zmian dla wszystkich związków zależności od rodzaju rdzenia. Na kierunek zmian poszczególnych parametrów W elektrochemicznych wpływa jednocześnie rodzaj rdzenia i podstawnika. I tak, w grupie związków [ReCl(CO)₃(Ph-terpy- κ^2 N)], [ReCl(CO)₃(Ph-dtpy- κ^2 N)] i [ReCl(CO)₃(Ph-dppy- κ^2 N)] energia poziomu LUMO obniża się w szeregu terpy > dtpy > dppy, natomiast energia HOMO maleje w kolejności dppy > terpy > dtpy. W przypadku [ReCl(CO)₃(Ph-terpy- κ^2 N)], [ReCl(CO)₃(Ph-dtpy- κ^2 N)] przerwa energetyczna HOMO–LUMO jest porównywalna, ale wyraźnie wyższa niż dla [ReCl(CO)₃(Ph-dppy-κ²N)]. W grupie związków zawierających ligandy podstawione grupami arylowymi z grupą -OCH3 obniżenie energii HOMO i LUMO obserwujemy w szeregu terpy > dtpy > dppy. Wśród karbonylków renu(I) z podstawnikami aminowymi rdzeń triiminowy nie zmienia wartości potencjału jonizacji. Ma on jednak wpływ na wartości powinowactwa elektronowego. Energia LUMO ulega stabilizacji w szeregu terpy > dtpy > dpy. Dla związków z podstawnikiem 4-(N-karbazolo)-fenylowym stabilizacja LUMO zachodzi również w takim samym szeregu, natomiast stabilizacja HOMO w kolejności dppy > terpy > dtpy. Karbonylek renu(I) z 4-(N-karbazolo)-fenylo-dppy charakteryzuje się jedną z najniższych wartości Eg wynoszącą 1,87 eV. W przypadku karbonylków renu(I) z ligandami triiminowymi podstawionymi grupami pirydylowymi analiza porównawcza jest możliwa jedynie dla [ReCl(CO)₃(py-terpy- κ^2 N)] i [ReCl(CO)₃(py-dtpy- κ^2 N)]. Związki [ReCl(CO)₃(py-dppy- κ^2 N)] nie są znane w literaturze. Dla tych związków rdzeń triiminowy wykazuje zdecydowanie większy wpływ na energię LUMO niż energię HOMO. Obserwuje się destabilizację poziomu LUMO dla związków [ReCl(CO)₃(py-dtpy- κ^2 N)] z grupa 2- i 3-pirydylo, podczas gdy energia LUMO dla [ReCl(CO)₃(4-py-dtpy-κ²N)] jest niższa w porównaniu z odpowiednimi związkami z podstawnikami 2- i 3-pirydylowym. Związki z podstawnikiem 2-chinolinowym oraz N-etylo-3-karbazolowym charakteryzują się stabilizacją poziomów HOMO i LUMO w szeregu *terpy* > *dtpy* > *dppy*.

Wartości potencjałów jonizacji i powinowactwa elektronowego dla związków [ReCl(CO)₂(R-terpy- κ^3 N)] prezentuje Tabela 23. Pomiary wykonano w nasyconym azotem roztworze DMF z dodatkiem 0,1 M NBu₄PF₆ jako elektrolitu pomocniczego. Elektrodą pracującą była elektroda szklana pokryta tlenkiem cyny domieszkowanym fluorem (FTO, fluorine-tin oxide). Jako wzorca wewnętrznego użyto ferrocenu, którego potencjał jonizacji Fc/Fc⁺ wynosi w próżni -5,1 eV.

		CN	CF3	Br	CH ₃	
Oznaczenie	۶ 1	<u>३</u>	ξ 3	<u>۶</u> 4	§ 5	<u>6</u>
Eutl	0,05	0,09	0,07	0,06	0,05	0,03
Ered	-1,65	-1,58	-1,60	-1,62	-1,67	-1,71
EA	-3,45	-3,52	-3,50	-3,48	-3,43	-3,39
IP	-5,15	-5,19	-5,17	-5,16	-5,15	-5,13

Tabela 23. Wartości potencjału jonizacji (IP), powinowactwa elektronowego (EA) oraz przerwy energetycznej (E_g) wyrażonych w elektronowoltach dla [ReCl(CO)₂(R-terpy-κ³N)] [46].

Ze względu na przeprowadzenie eksperymentów elektrochemicznych związków [ReCl(CO)₂(R-terpy- κ^3 N)] w innym warunkach niż te, które były zastosowane dla karbonylków renu(I) z ligandami triiminowymi skoordynowanymi dwukleszczowo nie przeprowadzono analizy porównawczej tych dwóch grup. Zebrane dane pozwalają jednak na zaobserwowanie pewnych zależności w obrębie związków [ReCl(CO)₂(R-terpy- κ^3 N)]. Podstawniki elektrono-akceptorowe, jakimi są podstawnik cyjankowy, trifluorometylowy i bromkowy, prowadzą do niewielkiej stabilizacji poziomu LUMO, podczas gdy praktycznie nie wpływają na energię HOMO. W efekcie, powodują nieznaczny spadek wartości przerwy energetycznej w porównaniu do związku [ReCl(CO)₂(Ph-terpy- κ^3 N)]. Z kolei, podstawniki o charakterze elektrono-donorowym (4-metoksy i 4-dimetyloaminowy) powodują nieznaczne zwiększenie przerwy energetycznej w stosunku do [ReCl(CO)₂(Ph-terpy- κ^3 N)]. Następuje to w rezultacie destabilizacji poziomu LUMO. Podobnie jak i podstawniki elektrono-akceptorowe praktycznie nie wpływają na energię HOMO (Rysunek 22).

Rysunek 22. Poziomy orbitali HOMO i LUMO dla związków [ReCl(CO)₂(R-terpy-κ³N)] podanych w Tabeli 23.

4.4. Modyfikacje strukturalne 2,2':6',2"-terpirydyny a właściwości termiczne karbonylków renu(I)

Istotnymi parametrami dla związków dedykowanych do zastosowań w optoelektronice są temperatura topnienia (T_m) , krystalizacji (T_c) oraz zeszklenia (T_g) . Związki powinny charakteryzować się wysokimi temperaturami topnienia i ulegać stopieniu bez rozkładu, a szczególnie korzystne jest tworzenie się szkieł molekularnych. Materiały posiadające tą cechę charakteryzują się przezroczystością, homogenicznością oraz izotropowością.

Wartość temperatur T_m , T_c i T_g dla związków koordynacyjnych renu(I) z ligandami koordynującymi do jonu metalu dwukleszczowo zostały zawarte w Tabeli 24.

R	terpy	dtpv	dppv	Lit.
	I skan: Tm 333, 341	I skan: Tm 282, 305 Tc 292	I skan: Tm 349	[64]
CH3	I skan: Tm 308 II skan: Tg 246	I skan: Tm 125, 143 II skan: Tm 263 z rozkładem	I skan: Tm 204 II skan: Tg 67 Tc 119, 151, 184 Tm 202	[71]
O'CH's	I skan: Tm 279, 294	I skan: Tg 173 Tc 243 Tm 302 z rozkładem	I skan: Tm 309 z rozkładem	[71]
O CH3	I skan: Tm 270 II skan: Tg 185	I skan: Tg 134 Tm 235 z rozkładem	I skan: Tm 251, 311 z rozkładem	[71]
N N N N N N N N N N N N N N N N N N N	I skan: Tm 347	I skan: Tm 306 II skan: Tg 154	I skan: Tm 340 z rozkładem Tg 149	[70]
	I skan: Tm 316	I skan: Tg 205 Tm 316	I skan: Tm 314	[64]
	I skan: Tm 218 II skan: Tg 220	I skan: Tm 298, 311 II skan: Tg 176 Tm 310	I skan: Tm 202, 210 II skan: Tg 180	[70]
, s	I skan: Tm 359	I skan: Tg 183 Tm 334 II skan: Tg 188	-	[69, 75]

Tabela 24. Wartości temperatury topnienia (T_m), krystalizacji (T_c) i zeszklenia (T_g) wyrażonych w °C dla zwiazków [ReCl(CO)₃(R-terpy-κ²N)].

S	I skan: Tm 363	I skan: Tm 350 II skan: Tg 198	-	[65, 75]
	I skan: Tm 345	I skan: Tm 176 II skan: Tg 23	-	[65, 75]

Zdecydowana większość związków renu(I) z ligandami triiminowymi łaczącymi się z jonem Re(I) dwukleszczowo ulega stopieniu w wysokich temperaturach co czyni je atrakcyjnymi komponentami do wytwarzania urządzeń optoelektronicznych. Tylko nieliczne, głównie związki renu(I) z metoksyarylowymi podstawnikami, topiły się z rozkładem. Temperatury topnienia związków [ReCl(CO)₃(R-terpy- κ^2 N)], [ReCl(CO)₃(R-dtpy- κ^2 N)] i [ReCl(CO)₃(R-dppy- κ^2 N)] mieszczą się odpowiednio w zakresach 218-363°C, 125-350°C i 202-349°C. Związki $[ReCl(CO)_3(R-dtpy-\kappa^2N)]$ cechują się wyraźnie wyższą tendencją do przechodzenia w stan szklisty w porównaniu z [ReCl(CO)₃(R-terpy- κ^2 N)] i [ReCl(CO)₃(R-dppy- κ^2 N)]. Tworzenie się stanu szklistego potwierdzono dla 3 z 10 związków Re(I) opartych na rdzeniu terpy, 8 z 10 na rdzeniu dtpy oraz 3 z 7 na rdzeniu dppy. Obserwuje się też korzystny wpływ podstawników elektronodonorowych na tworzenie się stanu szklistego i temperatury zeszklenia związków koordynacyjnych renu(I). Temperatury zeszklenia dla większości związków Re(I) były wysokie, przyjmując wartości z przedziału 134–246°C. Wyjątkami są [ReCl(CO)₃(MeO-C₆H₄-dppy-κ²N)] i [ReCl(CO)₃(furan-dtpy-κ²N)], dla których temperatury zeszklenia wynoszą odpowiednio 67°C i 23°C. Podobnie jak w przypadku parametrów elektrochemicznych, również i dla właściwości termicznych nie daje się jednak zauważyć jednego kierunku zmian w zależności od rodzaju rdzenia, są one determinowane jednocześnie przez rodzaj rdzenia i rodzaj podstawnika. Natomiast właściwości termiczne związków [ReCl(CO)₂(R-terpy-κ³N)] nie były badane.

4.5. Modyfikacje strukturalne 2,2':6',2"-terpirydyny a właściwości absorpcyjne karbonylków renu(I)

Generalnie widma UV-Vis związków renu(I) z pochodnymi 2,2':6',2"-terpirydyny skoordynowanymi do jonu centralnego w sposób dwukleszczowy mają ten sam profil co widmo [ReCl(CO)₃(terpy- κ^2 N)], to znaczy wykazują intensywne pasma w przedziale 300–350 nm odpowiadające dozwolonym przejściom elektronowym w obrębie liganda IL ($\pi \rightarrow \pi^*$) oraz pasma o zdecydowanie niższych molowych współczynnikach absorpcji i charakterze charge-transfer (CT). Dane dotyczące najniżej energetycznego pasma dla związków renu(I) z ligandem terpirydynowym zmodyfikowanym przez podstawienie w pozycji 4' zostały zebrane w Tabeli 25. Podano położenie maksimum pasma (w nm) oraz jego molowy współczynnik absorpcji ($\cdot 10^4/\text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$). Przykładowe natomiast widma UV-Vis związków renu(I) z różnymi typami podstawników prezentuje Rysunek 23.

Tabela 25. Położenie maksium pasm absorpcji λ (w nm) oraz molowy współczynnik absorpcji ε dla najniżej energetycznego pasma w widmie UV-Vis związków renu(I) ze zmodyfikowanym ligandem terpirydynowym.

λ [nm] (ε [10 ⁴ /dm ³ * mol ⁻¹ * cm ⁻¹])			O CHa	CH ₅
MeCN	374 (0,46) [64]	384 (0,87) [66]	365 (1,30) [71]	374 (4,23) [71]
CHCl ₃	397 (0,28) [64]	390 (0,61) [66]	388 (0,83) [71]	384 (0,9) [71]
DMF	380 (4,0) ^[76]	_	378 (7,0) [76]	_
λ [nm] (ε [10 ⁴ /dm ³ * mol ⁻¹ * cm ⁻¹])	a	Br	F	C C
MeCN	385 (0,33) [66]	385 (0,54) [66]	383 (0,95) [66]	_
CHCl ₃	399 (0,40) [66]	401 (0,48) [66]	399 (0,65) [66]	_
DMF	—	382 (4,0) [76]	—	389 (4,0) [76]
λ [nm] (ε [10 ⁴ /dm ³ * mol ⁻¹ * cm ⁻¹])	CF3			
MeCN	—	419 (1,65) [70]	_	—
CHCl ₃	—	430 (1,44) [70]	_	_
DMF	387 (4,0) [76]	425 (24,0) [76]	_	_
CH_2Cl_2	—	—	380 (0,80) ^[49]	384 (0,52) ^[49]
λ [nm] (ε [10 ⁴ /dm ³ * mol ⁻¹ * cm ⁻¹])				N N N N N N N N N N N N N N N N N N N
MeCN	—	420 (1,94) [70]	429 (3,18) [45]	404 (1,21) [70]
CHCl ₃	_	438 (1,57) [70]	449 (2,05) [45]	418 (1,87) [70]
CH ₂ Cl ₂	224 (6,23) [49]	-	_	_

λ [nm] (ε [10 ⁴ /dm ³ * mol ⁻¹ * cm ⁻¹])		Z		s me
MeCN	398 (2,19) [70]	382 (0,31) [69]	384 (0,78) [65]	381 (0,44) [65]
CHCl ₃	403 (1,57) [70]	404 (0,21) [69]	403 (2,47) [65]	407 (2,38) [65]
λ [nm] (ε [10 ⁴ /dm ³ * mol ⁻¹ * cm ⁻¹])	a second	× ×	Z	
MeCN	383 (2,20) [65]	391 (2,5) [51]	385 (0,6) [51]	380 (1,52) [74]
CHCl ₃	416 (2,58) [65]	397 (2,2) [51]	404 (0,6) [51]	391 (1,51) [74]

Rysunek 23. Widma UV-Vis dla związków [ReCl(CO)₃(R-terpy-κ²N)] wykonanie w MeCN [49,51,64,65,69-71,74]. Rysunek (b) zaadaptowano z literatury [49] za zgodą © Royal Society of Chemistry 2013.

Analiza danych pozwala wyciągnąć następujące wnioski:

• największy wpływ na położenie i intensywność najniżej energetycznego pasma karbonylków renu(I) mają podstawniki aminowe połączone z centralnym pierścieniem 2,2':6',2"-terpirydyny poprzez fenyl. Wprowadzenie tych podstawników do rdzenia *terpy* prowadzi do wyraźnego batochromowego przesunięcia pasma i znacznego wzrostu jego

intensywności. W kierunku dłuższych fal są zdecydowanie silniej przesunięte pasma dla związków renu(I) zawierających jako podstawniki aminy alifatyczne i aromatyczne niż aminy acykliczne. W porównaniu z pasmem MLCT związku [ReCl(CO)₃(Ph-terpy- κ^2 N)] najniżej energetyczne pasmo związków renu(I) z ligandem terpirydynowym podstawionym grupami aminowymi wykazuje wyraźną asymmetrię, co wskazuje na udział przejść elektronowych o różnym charakterze, w tym przypadku ¹MLCT i ¹ILCT. Wyraźniejsze rozdzielenie składowych ¹MLCT i ¹ILCT obserwuje się na widmach związków renu(I) zawierających jako podstawniki aminy alifatyczne i aromatyczne niż acykliczne (Rysunek 23(a));

• batochromowe przesunięcie i wzrost intensywności najniżej energetycznego pasma absorpcyjnego w efekcie udziału przejść ILCT obserwuje się także w przypadku związków renu(I) z 2,2':6',2"-terpirydyną podstawioną aminami (difenyloamina oraz N-fenylo-2-naftyloamina) oraz bitiofenem przyłączonymi do liganda terpirydynowego w pozycji 4' w sposób bezpośredni (Rysunek 23(b));

• podstawnik 4-metoksyfenylowy powoduje hipsochromowe przesunięcie najniżej energetycznie położonego pasma absorpcji z jednoczesnym znacznym wzrostem molowego współczynnika absorpcji. Najniżej energetyczny stan w tym zwiazku ma charakter MLCT. W rezultacie natomiast zastąpienia 4-metoksyfenylu poprzez podstawnik 4-metoksy-1-naftylowy następuje dalszy wzrost intensywności pasma CT, а jego położenie pokrywa się Z położeniem pasma CT związku [ReCl(CO)₃(Ph-terpy- κ^2 N)], względem $[ReCl(CO)_3(MeO-C_6H_4-terpy-\kappa^2N)]$ а jest przesunięte batochromowo. Jest to efektem udziału przejść o charakterze ILCT;

• zastąpienie podstawników heterocyklicznych (tiofenowego oraz 2-pirydylowego) przez ich analogi ze skoniugowanym pierścieniem/pierścieniami benzenowymi (benzo[4,5]tiofenowy i 2-chinolinowy) prowadzi do wyraźnego wzrostu intensywności pasma, najczęściej bez zmiany jego położenia. Jest to wynikiem wzrostu zdolności liganda do delokalizacji gęstości elektronowej z jonu metalu (Rysunek 23(c));

 znikomy wpływ na właściwości absorpcyjne związków renu(I) stwierdzono w przypadku podstawników: 4-bromofenylowego, 4-cyjanofenylowego, 4-(triflorometylo)fenylowego, 4-chlorofenylowego oraz 2,4-difluorofenylowego i bifenylowego. We wszystkich tych związkach najniżej energetyczne pasmo ma charakter MLCT.

W celu określenia wpływu rdzenia triiminowego na właściwości absorpcyjne związków koordynacyjnych renu(I) dokonano analizy widm elektronowych związków zebranych w Tabeli 26 i zestawionych na Rysunku 24.

Dodstownik	Doznuszazalnik	λ [nm] (ε	Literatura		
roustawnik	Kozpuszczannik	terpy	dtpy	dppy	Literatura
	MeCN	374 (0,46)	389 (0,53)	405 (0,42)	[64]
	CHCl ₃	397 (0,28)	417 (0,44)	431 (0,42)	[04]
O CH3	MeCN	365 (1,30)	382 (0,96)	392 (0,77)	[71]
	CHCl ₃	388 (0,83)	405 (0,58)	424 (0,43)	[/1]
O CH3	MeCN	374 (4,23)	390 (1,18)	399 (1,02)	[71]
	CHCl ₃	384 (0,90)	401 (1,15)	421 (0,67)	[/1]
	MeCN	419 (1,65)	463 (3,18)	444 (1,91)	[70]
	CHCl ₃	430 (1,44)	443 (2,34)	458 (1,20)	[70]
	MeCN	420 (1,94)	436 (3,13)	442 (2,26)	[70]
	CHCl ₃	438 (1,57)	457 (2,19)	470 (1,64)	[/0]
	MeCN	414 (2,51)	446 (2,62)	454 (0,45)	[64]
	CHCl ₃	421 (2,42)	457 (3,21)	470 (1,13)	[04]
	MeCN	398 (2,19)	415 (2,41)	400 (0,86)	[20]
	CHCl ₃	403 (1,57)	424 (1,46)	431 (0,81)	[/0]
N	MeCN	388 (0,44)	408 (0,16)	-	[60 75]
have	CHCl ₃	406 (0,40)	432 (0,10)	-	[09,75]
s	MeCN	381 (0,44)	383 (0,56)	-	[65 75]
\$	CHCl ₃	407 (2,38)	433 (0,50)	-	[00,70]
	MeCN	384 (0,78)	396 (0,50)	-	[65 75]
	CHCl ₃	403 (2,47)	419 (0,64)	-	[03,73]

Tabela 26. Położenie maksium pasm absorpcji λ (w nm) oraz molowy współczynnik absorpcji ε dla najniżej energetycznego pasma w widmie UV-Vis związków renu(I) ze zmodyfikowanymi ligandami *terpy*, *dtpy* i *dppy*.

Rysunek 24. Widma UV-Vis dla związków [ReCl(CO)₃(R-terpy-κ²N)], [ReCl(CO)₃(R-dtpy-κ²N)] oraz [ReCl(CO)₃(R-dppy-κ²N)] wykonane w acetonitrylu [64,70].

Analiza tych danych pozwala zauważyć, że typ rdzenia triiminowego, a właściwie jego elektroakceptorowe właściwości mają znaczący wpływ na energię pasm. Zmiana *terpy* na *dppy* oraz *dtpy* w każdym z analizowanych przypadków skutkuje przesunięciem batochromowym najniżej energetycznego pasma, o nawet kilkadziesiąt nm. Z reguły, rdzeń *dppy* powoduje największe przesunięcie batochromowe.

Cechą charakterystyczną związków renu(I) ze wszystkimi ligandami triiminowymi jest również zależność położenia pasm od polarności zastosowanego do pomiarów rozpuszczalnika. Porównując dane zawarte w Tabeli 26 oraz analizując widma przedstawione na Rysunku 25 obserwuje się ujemny solwatochromizm, to znaczy batochromowe przesunięcie najniżej energetycznie położonego pasma przy zmianie polarnego rozpuszczalnika jakim jest acetonitryl na mniej polarny chloroform.

Rysunek 25. Widma UV-Vis dla związków [ReCl(CO)₃(R-terpy- κ^2 N)], [ReCl(CO)₃(R-dtpy- κ^2 N)] oraz [ReCl(CO)₃(R-dpy- κ^2 N)] zarejestrowane w rozpuszczalnikach o różnej polarności [65,71,75].

Związki renu(I) z pochodnymi 2,2':6',2"-terpirydyny skoordynowanymi do jonu metalu w sposób trójkleszczowy charakteryzują się obecnością trzech pasm w zakresie widzialnym przy długościach fali około: 410, 480 oraz 700–740 nm (Tabela 27 oraz Rysunek 26). W tym przypadku grupy elektrono-akceptorowe i elektrono-donorowe mają niewielki wpływ na położenie pasm względem związku [ReCl(CO)₂(Ph-terpy- κ^3 N)]. Podobnie jak i dla [ReCl(CO)₃(R-terpy- κ^2 N)] zauważyć można wyraźny wzrost intensywności pasma w przypadku podstawnika będącego aminą alifatyczną.

Rysunek 26. Widma UV-Vis wykonane w DMF dla związków [ReCl(CO)₂(R-C₆H₄-terpy-κ³N)]. Rysunek zaadaptowano z literatury [46] za zgodą © American Chemical Society 2021.

Podstawnik	λ _{max} [nm]	Podstawnik	λ _{max} [nm]	Podstawnik	λ _{max} [nm]
	407, 480, 718	CF3	412, 485, 736	CH3	406, 478, 710
CN CN	418, 487, 742	Br	408, 482, 727	× - (406, 487, 694

Tabela 27. Maksima pasm absorpcji typu CT dla [ReCl(CO)₂(R-terpy-κ³N)] [46].

4.6. Modyfikacje strukturalne 2,2':6',2"-terpirydyny a właściwości emisyjne karbonylków renu(I)

Związki renu(I) z ligandami terpirydynowymi wiążącymi się z jonem centralnym w sposób trójkleszczowy o wzorze [ReCl(CO)₂(R-terpy- κ^3 N)] nie wykazują emisji w temperaturze pokojowej podobnie jak związek niezmodyfikowany [ReCl(CO)₂(terpy- κ^3 N)]. Właściwości luminescencyjne większości związków renu(I) z pochodnymi 2,2':6',2"-terpirydyny koordynującymi w sposób dwukleszczowy były badane z wykorzystaniem technik stacjonarnych i czasowo-rozdzielczych w rozpuszczalnikach o różnych polarnościach, w ciele stałym oraz matrycy EtOH:MeOH (4:1, v:v) w temperaturze 77 K. Położenie maksimów pasm wzbudzenia oraz emisji, czas życia luminescencji oraz wydajność kwantową luminescencji dla związków [ReCl(CO)₃(R-terpy- κ^2 N)] podano w Tabeli 28.

Podstawnik	Lit.	Rozpuszczalnik	Wzbudzenie [nm]	Emisja [nm]	Czas życia [ns]	φ [%]
		CHCl ₃	393	665	4,6	1,23
Н	[45]	MeCN	380	656	3,6	1,26
		Ciało stałe	491	582	600,0	0,99
		CHCl ₃	400	667	10,6	0,43
		MeCN	380	666	6,1	0,21
	[49,64]	Ciało stałe	442	592	52,2	1,28
	. , ,	Ciało stałe Wang	365	562	1 950	—
		77K	384	543	5 072	—
		CHCl ₃	392	664	5,5	0,52
		MaCN	366	442	3,1	0.47
Í	560	IVIECIN	500	671	2,5	0,47
	[66]	Ciało stałe	462	592	494,4	12,46
		77K	363	516, 550	63 497	_
çı		CHCl ₃	397	669	2,9	0,13
		MeCN	376	664	2,6	0,09
	[66]	Ciało stałe	475	591	493	21,00
		77K	365	542	4 320	_
Br		CHCl ₃	396	665	27,8	0,44
		MeCN	346	664	3,6	0,15
	[66]	Ciało stałe	479	592	425	16,93
		77K	365	551	38 863	—
F		CHCl ₃	397	676	2,7	0,40
		MaCN	280	516	3,2	0.27
	[66]	IVIECIN	380	666	2,4	0,27
F		Ciało stałe	489	640	20,9	0,96
ξ		77K	370	549	3 906	
CH3		CHCl ₃	381	647	49,8	0,20
		MeCN	370	661	3,0	0,20
	[71]	Ciało stałe	481	584	587	31,00
	[, -]	77K	368	505, 533	9 233	_
CH ₃		CHCl ₃	384	658	4,4	0,40
		MeCN	375	650	4,1	0,50
	[71]	Ciało stałe	471	574	8 362	1,20
		77K	389	536, 568	392 311	_

Tabela 28. Charakterystyka właściwości emisyjnych związków [ReCl(CO)₃(R-terpy-κ²N)].

CH ₃		CHCl ₃	391	661	7,2	0,20
Ĭ		NL CN	336	510	4,6	0,30
		MeCN	384	661	5,2	0,30
	[71]	Ciało stałe	489	631	49 222	1,00
		77K	389	525 565 605	133 829	_
ξ. Ν		culo:	101	(02	155 622	0.12
		CHCl ₃	404	692	1,7	0,13
	[69]	MeCN	380	693	1,9	0,31
l E		Ciało stałe	461	603	52,1	2,91
\$		///K	365	567	3 224	
N		CHCl ₃	402	677	10,1	0,21
	[69]	MeCN	380	673	1,8	0,31
l š			493	636	61,2	1,/6
>		7/K	367	553	5 234	_
		CHCl ₃	401	682	2,0	0,22
	[69]	MeCN	385	678	2,1	0,35
	[*,]	Ciało stałe	480	612	60,0	2,74
3		77K	370	555	4 856	_
		CHCl ₃	395	675	8,2	0,22
s	[65]	MeCN	380	664	5,6	0,22
ξ	[00]	Ciało stałe	458	604	431	3,50
5		77K	369	525, 565	69 153	_
		CHCl ₃	390	484, 670, 736	2,4	0,15
		MeCN	371	516	3,1	0,09
s_	[(5]	Ciala stala	500	689	25 312	1 10
s	[65]	Claio State	500	758	19 668	1,19
			374	410, 434, 467	1,0	
ξ		///K	447	661, 729	177 964	_
/===\		CHCl ₃	395	675	8.2	0.22
		MeCN	380	664	5.6	0.22
	[65]	Ciało stałe	458	604	431	3.50
ξ		77K	369	525, 565	69 153	_
/\		CHCl ₃	395	656	5.7	0.66
-N.		MeCN	390	646	5,1	0,37
	[65]	Ciało stałe	442	543, 567	52 002	1,46
ξ		77K	397	539, 576	94 266	_
		CHCl ₃	400	684	4,2	0,73
		MeCN	400	643	5,8	0,52
	[65]	Ciało stałe	465	633	5 1 5 3	7,99
s		77K	388	540, 583	131 960	
ξ		OUCI	200		10.5	0.70
		CHCl ₃	390	666	12,5	0,58
s.	[65]	Cialo stala	380	625	<u> </u>	10.47
			401	540 500	10 770	17,4/
3			380	540, 583	130 365	-
		CHCl ₃	421	636	20,1	1,13
	[70]	MeCN	452	687	0,3	1,91
	[/0]	Ciało stałe	494	636	1 350	0,67
		77K	444	580	227 985	—
		CUCI	358	510	4,1	1,00
			417	634	16,6	0,80
	[70]	MeCN	445	698	23,0	0,80
	[[/0]	Ciało stałe	536	653	10	0,40
		77K	435	585	228 431	_
\$ 		CUCI	404	650	0.4	0.60
		MaCN	404	661	9,4	1.00
N N		Ciele stele	420	571	5 2 4 7	1,00
	[70]	Ciało stałe	4/0	3/1	5 34/	8,70
		$\gamma \tau V$	410	570	100.229	_
		//K	419	570	190 228	
5	1			1	1	1

		CHC1.	404	507	3,7	0.14
N N		CHCI3	432	617	40,1	0,14
	[64]	MeCN	458	702	0,079	0,36
	[0+]	Ciało stałe	522	625	2 280	1,29
ŝ		77K	429	588	40 713	—
		CHCl ₃	447	628	123	0,80
		MeCN	456	695	14,6	0,40
	[70]	Ciało stałe	515	604	2 981	1,30
	[, •]	77K	453	596, 601 sh	240 390	_
		CH ₂ Cl ₂	459	578	1 370	0,30
N	[49]	Ciało stałe	365	551	1 660	_
		CH ₂ Cl ₂	444	600	2 500	0,60
	[49]	Ciało stałe	367	554	1 970	_
		CH ₂ Cl ₂	442	601	1 330	0,90
	[49]	Ciało stałe	365	546	3 040	_

Rysunek 27. Wybrane widma emisyjne dla związków typu [ReCl(CO)₃(R-terpy-κ²N)] [45,64-66,69-71].

Wszystkie przedstawione w Tabeli 28 związki wykazują emisję w roztworach, a maksima ich emisji przypadają na zakres: 442–743 nm dla acetonitrylu, 484–692 nm dla chloroformu oraz 578-601 nm dla dichlorometanu. Widma emisyjne zdecydowanej większości omawianych związków charakteryzują się obecnością szerokiego w roztworze jednego i nieustrukturyzowanego pasma (Rysunek 27 (a-b)). Do wyjątków, w przypadku których obserwuje się dwa maksima emisji, zalicza się roztwory acetonitrylowe związków renu(I) z podstawnikiem: 2,4-difluorofenylowym (różnica między maksimum dla obu pasam wynosi 150 nm), bifenylowym (różnica 229 nm) i 6-metoksy-2-naftylowym (151 nm). W roztworach chloroformowych dwa maksima emisji widoczne są dla dwóch z związków z podstawnikiem 4-(N-pirolidyno)-fenylowym, dla którego różnica maksimów wynosi 110 nm oraz 4-(N-piperydyno)-fenylowym z różnicą 136 nm (Rysunek 27 (c)). Obecność dwóch pasm odpowiada emisji z dwóch różnych stanów. W przypadku omawianych związków renu(I) tymi stanami są ¹ILCT/¹IL oraz ³MLCT [77-80]. Wydajność kwantowa luminescencji dla związków [ReCl(CO)₃(R-terpy- κ^2 N)] w roztworze jest niska i zawiera się w przedziale 0,09–1,91%. Czasy życia stanów wzbudzonych są natomiast bardzo zróżnicowane i silnie zależne od wprowadzonego podstawnika. Zawierają się w przedziale od kilku nanosekund do kilku mikrosekund. Na uwagę zasługuje fakt, że czasy życia stanów wzbudzonych związków koordynacyjnych Re(I) podstawnikami karbazolowym, difenyloaminowym, Z N-fenylonaftylo-2-aminowym oraz wyjściowego [ReCl(CO)₃(terpy- κ^2 N)] podane w publikacji Wanga [49] znacznie odbiegaja od pozostałych. Wyniki naszych badań dla [ReCl(CO)₃(terpy- κ^2 N)], opisane w pracy Maroń [45], nie potwierdziły tak długiego czasu życia. Zmierzony czas życia okazał się być znacznie krótszy i wynosił kilka nanosekund, a nie jak w pomiarach Wanga blisko 2 mikroseknundy. Czasy życia dla pozostałych związków przedstawionych w pracy Wanga nie były powtarzane przez nasz Zespół, jednakże istnieje możliwość, że również w ich przypadku czasy życia są zawyżone.

Wszystkie związki wykazują również emisję w ciele stałym. Jest ona przesunięta w zdecydowanej większości przypadków hipsochromowo w stosunku do emisji w roztworach, i przypada na zakres 543–758 nm. Podobnie jak w przypadku roztworów widma emisji w ciele stałym zazwyczaj obejmują jedno szerokie i niewykazujące ustrukturyzowania pasmo. Wyjątkiem są widma związków [ReCl(CO)₃(R-terpy-κ²N)] z podstawnikiem bitiofenowym i N-metylopirolowym, gdzie widoczna jest strukturyzacja pasma emisji (Rysunek 27(d)). Wydajność kwantowa związków renu(I) z pochodnymi 2,2':6',2''-terpirydyny w ciele stałym jest generalnie wyższa niż dla roztworów i zawiera się w szerszym przedziale, od 0,4 do aż 31%. Czasy życia stanów wzbudzonych są również zdecydowanie dłuższe niż w przypadku roztworów, ale podobnie jak dla emisji w roztworze bardzo zróżnicowane w zależności od wprowadzonego podstawnika. Zawierają się w przedziale od kilkunastu nanosekund do nawet kilku mikrosekund.

W temperaturze 77 K emisja badanych związków za wyjątkiem związku renu(I) z podstawnikiem bitiofenowym wykazuje hipsochromowe przesunięcie pasma w stosunku do emisji w roztworach (Rysunek 27 (e-g)). Czasy życia luminescencji w temperaturze 77 K są znacznie wydłużone względem czasów mierzonych w roztworach oraz ciele stałym i wynoszą od kilku do kilkuset mikrosekund. Ze względu na kształt pasma emisji w niskiej temperaturze związki renu(I) podzielić możemy na dwie grupy. Do pierwszej zaliczamy związki, których widma emisyjne reprezentowane są przez szerokie nieustrukturyzowane pasmo, przypisywane emisji ze stanu ³MLCT (Rysunek 27 (e)). Drugą grupę stanowią natomiast związki, których pasmo jest ustrukturyzowane, co przypisuje się emisji ze stanu trypletowego zlokalizowanego na ligandzie organicznym. Do grupy tej zaliczamy związki [ReCl(CO)₃(R-terpy-κ²N)] podstawnikami: 4-metoksy-1-naftylowym, 6-metoksy-2-naftylowym, a także Z z heterocyklicznymi, za wyjątkiem 2-, 3-, 4-pirydylowych (Rysunek 27 (f)).

Zebrane w Tabeli 28 i na Rysunku 27 dane stanowią dobrą bazę do wyznaczenia zależności pomiędzy strukturą molekularną liganda organicznego, a właściwościami emisyjnymi związków renu(I) [ReCl(CO)₃(R-terpy-κ²N)] z tymi ligandami. Na ich podstawie można wyciągnąć następujące wnioski:

- wprowadzenie podstawników do centralnej pirydyny w pozycji 4 ' z reguły powoduje nieznaczne przesunięcie maksimum emisji w stosunku do związku wyjściowego $[ReCl(CO)_3(terpy-\kappa^2N)]$ zarówno w środowisku roztworów oraz w ciele stałym. Największe batochromowe przesunięcie w porównaniu do [ReCl(CO)₃(terpy-κ²N)] stwierdza się dla podstawników 2- i 4-pirydylowego oraz benzo[4,5]tiofen-2-ylowego wynoszące odpowiednio 17 nm, 27 nm i 19 nm w roztworze chloroformu (Rysunek 27 (b)), (39 podstawników aminowych w acetonitrylu nm dla podstawnika 4-(N-difenylo)-fenylowego, 46 dla 4-(N-pirolidyno)-fenylowego i 42 dla 4-(N-piperydylo)fenylowego (Rysunek 27 (a)). Przesunięcie maksimum emisji w kierunku wyższych energii potwierdzono natomiast dla podstawników: N-metylopirolowego, 4-metoksy-1-naftylowego oraz podstawników aminowych w roztworze chloroformowym (Rysunek 27 (b)), 4-metoksy-1-naftylowego, N-metylopirolowego oraz etylenodioksytiofen-2-ylowego i benzo[4,5]tiofen-2-ylowego w roztworze acetonitrylu (Rysunek 27 (a)), a także w ciele stałym dla podstawnika 4-metoksy-1-naftylowego, 4-(N-morfolino)-fenylowego, karbazolu, difenyloaminy oraz N-fenylonaftaleno-2-aminy. W ciele stałym największe przesunięcie batochromowe względem [ReCl(CO)₃(terpy-κ²N)] obserwowane jest dla podstawnika bitiofenowego (176 nm), a przesunięcie hispochromowe zarejestrowano dla podstawników 4-metoksy-1-naftylowego, karbazolu, difenyloaminy oraz N-fenylonaftylo-2-aminowego (Rysunek 27 (c));
- wyraźne wydłużenie czasu zaniku w roztworze, do kilkudziesięciu nanosekund, stwierdzono dla związków z podstawnikami: 4-metoksyfenylowym, 4-(N-morfolino)-fenylowym, 4-(N-metylo)-fenylowym, 4-(N-pirolidyno)-fenylowym 4-bromofenylowym, oraz a dla 4-(N-difenyloamino)-fenylowego do nawet ponad 120 nanosekund. Otrzymywanie związków cechujących się wydłużonymi czasami życia luminescencji jest korzystne z punktu widzenia zastosowań tych związków w urządzeniach typu OLED oraz do obrazowania komórkowego. Grupa fenylowa, bifenylowa, podstawniki z grupami halogenowymi przyłączonymi do pierścienia fenylowego (za wyjątkiem 4-bromofenylowego w chloroformie) oraz podstawniki heterocykliczne nie wpływają jednak w znaczący sposób na wydłużenie czasów życia w roztworze;

- większość podstawników (w tym te z grupami metoksy, heterocyklicznymi, aminowymi oprócz 4-(N-piperydylo)-fenylu, a także N-fenylonaftylo-2-amina) powoduje wydłużenie czasów życia luminescencji w ciele stałym w stosunku do związku [ReCl(CO)₃(terpy-κ²N)]. Na szczególną uwagę zasługują związki z podstawnikami N-metylopirolowym i 6-metoksy-2-naftylowym, dla których czasy życia wynosza około odpowiednio 52 i 49 mikrosekund. Wzrost czasów życia obserwuje się także w niskiej temperaturze. Dla większości związków waha się w granicach 3-70 mikrosekund. Natomiast wprowadzenie podstawników Z grupami metoksynaftylowymi, bitiofenowej, etylenodioksytiofen-2-ylowej, benzo[4,5]tiofen-2-ylowej, N-metylopirolowej oraz grup aminowych prowadzi do wyraźnego wzrostu czasów zaniku granicach W 94-392 mikrosekund, co wskazuje na zmianę stanu z MLCT na stan IL/ILCT;
- wydajność kwantowa emisji w ciele stałym silnie zależy od rodzaju podstawnika. Największą wydajność kwantową w ciele stałym potwierdzono dla związku z podstawnikiem 4-metoksyfenylowym (31%). Wydajność kwantową powyżej 10% zarejestrowano wyniki dla związków zmodyfikowanych podstawnkami: 4-chlorofenylowym, 4-bromofenylowym oraz etylenodioksytiofen-2-ylowym. W granicach 5-10% zawierają się wydajności dla związków z podstawnikami: bifenylowym, benzo[4,5]tiofen-2-ylowym oraz 4-(N-morfolino)-fenylowym.

Opisu wpływu jaki wywiera na właściwości luminescencyjne zmiana pierścieni bocznych w ligandzie terpirydynowym można dokonać przez porównanie odpowiednich parametrów dla związków różniących się rdzeniem triiminowym, ale posiadających w pozycji 4' liganda *terpy* i pozycji 4 ligandów *dppy* i *dtpy* taki sam podstawnik. Dane dla zmodyfikowanych związków zebrane zostały w Tabeli 29 i na Rysunku 28.

Podstawnik + literatura	Lit.	Rozpuszczalni k	Rdzeń	Emisja [nm]	Czas życia [ns] (Udział [%])	φ [%]
			terpy	667	6,1	0,43
		CHCl ₃	dtpy	727	6,4	0,28
			dppy	732	4,8	0,38
			terpy	666	10,6	0,21
		MeCN	dtpy	735	4,4	0,36
	56.43		dppy	736	3,4	0,34
	[64]	Ciało stałe	terpy	592	52,2	1,28
5			dtpy	650	131	2,54
			dppy	623	186	0,19
			terpy	543	5 072	_
		77K	dtpy	585	2 895	—
			dppy	587	4 878	—
	[71]	CUCL	terpy	647	49,8	0,20
	[[/1]		dtpy	721	7,3	0,30

Zabela 29. Charakterystyka właściwości emisyjnych związków koordynacyjnych różniących się rdzeniem liganda.

CH3			dppv	684	89.8	0.40	
o ′			terny	661	3.0	0.20	
		MeCN	dtpy	724	4 9	0.30	
		inteerv	dnpy	730	3.9	0.20	
			terny	584	587	31.00	
ξ		Ciało stałe	dtpy	632	166	6.00	
		Claid State	dnny	628	217	0,00	
			appy	628	217	9,00	
			terpy	505, 533	9 233	_	
		77K	dtpy	577	3 301	—	
			dppy	575	4 583	-	
			terpy	658	4,4	0,40	
		CLICI	dtpy	720	7,0	0,40	
		CHCl ₃		505	7.0	0.20	
			dppy	718	5.3	0.30	
011			terny	650	4 1	0.50	
0 0		MeCN	dtpy	732	4.6	0.40	
	[71]	inteerv	dnpy	731	3.6	0.30	
	[[/1]		terny	574	8 362	1 20	
		Ciało stałe	dtpy	645	80.0	3.40	
Š		Ciaio state	dany	626	124	2,70	
د ،			uppy	52(5(9	202.211	2,20	
			terpy	536, 568	392 311	_	
		77K	dtpy	546, 583	140 038	—	
			dppy	550, 586	113 070	-	
		GUGI	terpy	682	2,0	0,22	
		CHCl ₃	dtpv	734	4.6	0.88	
				terpy	678	2,1	0.35
		MeCN	dtpy	744	3.2	0.34	
Ń	[69,75]		terny	612	60.0	2 74	
<u> </u>		Ciało stałe	dtpy	640	284.0	9.21	
,			tormy	555	4 856	,21	
		77K	terpy	535	4 8 3 0		
			dtpy	535, 572	111/	_	
		CHCl ₃	terpy	675	5,7	0,22	
			dtpy	734	5,9	0,55	
			terpy	664	5,1	0,22	
s	[65 75]		dtpy	744	4,3	0,49	
Ì	[05,75]	Ciako stako	terpy	604	431	3,50	
5			dtpy	640	293	3,15	
		771/	terpy	525, 565	94 266	-	
		/ /K	dtpy	535, 572	19 273	_	
			terny	484 670 736	24	0.15	
		CHCl ₃	dtpy	691 735	193	0.87	
			terny	516	3.1	0.09	
		MeCN	dtpy	682 739	92.6	0.88	
s			dipy	680	25 312	0,00	
	[65,75]	Cialo stala	terpy	758	10 668	1,19	
s		Claid State	dtay	604 763	19 008	2.02	
Š			dipy	094, 703	48 033	2,05	
			terpy	410, 434, 467	1,0	-	
		77K		661, 729	1//964	-	
			dtpy	668, 738	119 328		
		CUCI	terpy	675	8,2	0,22	
			dtpy	731	6,3	0,28	
		MON	terpy	664	5,6	0,22	
o /		MeUN	dtpy	720	9,2	0,80	
Š	[65,75]	<u> </u>	terpy	604	431	3,50	
3		Ciało stałe	dtpv	630	259	4,52	
			terny	525 565	69 153		
		77K	dterr	527, 570	20 410		
			utpy	551,519	30 419	1.12	
			terpy	636	20,1	1,13	
		CHCl ₃	dtpy	697/	13,0	0,30	
	[70]		dppy	695	106	1,7	
		MeCN	terpy	687	0,3	1,91	
ξ.		MICCIN	dtpy	732	377	0,70	

			dppy	787	45,7	0,90
			terpy	636	1 350	0,67
		Ciało stałe	dtpy	671	84,6	0,40
			dppy	634	394	1,10
			terpy	580	227 985	-
		77K	dtpy	596	130 092	_
			dppy	619	66 313	_
				510	4.1	1.00
			terpy	634	16.6	0.80
		CHCl ₃	dtpv	701	12.6	0.60
\sim			dppy	698	28,7	0,20
			terpy	698	23,0	0,80
N N		MeCN	dtpy	750	153	3.20
	[70]		dppv	747	13.3	2.60
			terpy	653	105	0,40
		Ciało stałe	dtpy	660	522	0,10
Ş			dppy	675	63,8	0,90
		77K	terpy	585	228 431	
			dtpv	598	117 702	_
			dppy	588	18 229	_
		CHCl3	- PPJ	507	37	0.14
			terpy	617	40.1	0,11
				536	3.1	0.17
			dtpy	686	15.1	0.59
			dppy	690	32,7	0.93
	[64]	MeCN	terpy	702	0,079	0,36
N N			dtpy	741	1,1	0,25
			dppy	781	8,1	0,14
			terpy	625	2 280	1,29
		C' 1 (1	1.	652	510	1.52
ş		Ciało stałe	dtpy	752	759	1,53
			dppy	661	372	2,27
			terpy	588	40 713	_
		77K	dtpv	607	179 302	_
			dppv	632	73 235	
			ternv	628	123	0.80
		CHCl ₃	dtpv	708	24.0	2.40
			dppy	711	11,1	0,90
			terpy	695	14,6	0,40
		MeCN	dtpy	734	41,6	0,60
N N V			dppy	726	53	0,50
	[[70]		terpy	604	2 981	1,30
		Ciało stałe	dtpy	609	93,9	2,50
			dppy	644	200	1,70
2			terpy	596, 601 sh	240 390	_
		77K	dtpy	579, 614 sh	99 610	—
			dppy	589, 615sh	72 059	_

Rysunek 28. Wybrane widma emisyjne dla związków typu [ReCl(CO)₃(R-terpy-κ²N)], [ReCl(CO)₃(R-dtpy-κ²N)] oraz [ReCl(CO)₃(R-dppy-κ²N)] [70,71].

W każdym środowisku, to jest w ciele stałym, temperaturze 77 K oraz w roztworach acetonitrylowych i chloroformowych, a także dla każdego z omawianych podstawników modyfikacja bocznych pierścieni polegająca na zmianie terpy na dppy lub dtpy powoduje batochromowe przesunięcie maksimum pasma emisji w stosunku do odpowiednich związków [ReCl(CO)₃(R-terpy- κ^2 N)] (Rysunek 28). W większości przypadków w ciele stałym i niskiej temperaturze czasy życia luminescencji malały po zmodyfikowaniu pierścieni bocznych terpirydyny (za wyjątkiem podstawnika fenylowego), natomiast dla roztworów zależność nie jest prosta do określenia i jest związana z rodzajem zastosowanego podstawnika. Zmiany wydajności kwantowych nie są w jednoznaczny sposób zależne od rodzaju liganda triiiminowego, w większym stopniu są uwarunkowane rodzajem wprowadzonego podstawnika. Zwiazki podstawnikami 4-(N-difenylo)fenylowym, 4-metoksy-1-naftylowym Z oraz heterocyklicznymi ze wszystkimi rodzajami rdzenia posiadają ustrukturyzowane widmo emisyjne wykonane w 77 K, co może wskazywać na obecność stanu emisyjnego zlokalizowanego na ligandzie (Rysunek 28).

W podsumowaniu rozdziałów dotyczących wpływu modyfikacji strukturalnych liganda organicznego na właściwości fizykochemiczne karbonylowych związków renu(I) z pochodnymi 2,2':6',2''-terpirydyny stwierdzić można, że:

• modyfikacje nie mają wpływu na sposób koordynacji oraz parametry opisujące centrum koordynacyjne, a mianowicie długości wiązań oraz kąty między atomami;

wprowadzenie podstawników do rdzenia terpirydynowego ma zdecydowanie większy wpływ na właściwości fizykochemiczne karbonylowych związków renu(I) z dwukleszczową koordynacją liganda *terpy* [ReCl(CO)₃(R-terpy-κ²N)] niż trójkleszczową [ReCl(CO)₂(R-terpy-κ³N)];

 modyfikacje liganda *terpy*, zarówno poprzez wprowadzanie podstawnika jak i zmianę pierścieni bocznych, dają możliwość poprawy właściwości termicznych [ReCl(CO)₃(R-terpy-κ²N)] – zwiększenia ich zdolności do tworzenia szkieł molekularnych, czy podwyższenia temperatury topnienia;

 wprowadzenie silnie elektronodonorowych podstawników takich jak aminy alifatyczne i aromatyczne, a także podstawniki 4-metoksyfenylowy i bitiofenowy dają możliwość wyraźnej poprawy właściwości absorpcyjnych związków [ReCl(CO)₃(R-terpy-κ²N)] w obszarze światła widzialnego, co przypisuje się udziałowi przejść ¹ILCT polegających na przeniesieniu gęstości elektronowej z podstawnika na akceptorowy rdzeń *terpy*;

zdecydowana większość podstawników wprowadzonych w pozycję 4' liganda *terpy* powoduje wydłużenie czasów życia luminescencji [ReCl(CO)₃(R-terpy- κ^2 N)] w ciele stałym w stosunku do związku [ReCl(CO)₃(terpy- κ^2 N)], podczas gdy w roztworze obserwuje wydłużenie zaniku dla związków z podstawnikami sie czasu 4-metoksyfenylowym, 4-(N-morfolino)-fenylowym i 4-(N-difenylo)-fenylowym, odpowiedzialnych za powstawanie stanu trypletowego ³ILCT;

modyfikacja liganda terpirydynowego poprzez zmianę pierścieni bocznych z utworzeniem związków [ReCl(CO)₃(R-dtpy-κ²N)] oraz [ReCl(CO)₃(R-dppy-κ²N)] powoduje batochromowe przesunięcie pasm absorpcji i emisji oraz skrócenie czasów życia luminescencji mierzonych w ciele stałym oraz temperaturze 77 K;

 elektronodonorowe lub policykliczne podstawniki dają możliwość zmiany charakteru stanu trypletowego z ³MLCT na ³ILCT lub ³IL.

5. Podejście bichromoforowe – efektywna strategia otrzymywania związków o długich czasach życia stanów wzbudzonych

W 1992 roku Ford and Rodgers przedstawili nową strategię projektowania związków koordynacyjnych metali przejściowych cechujących się długimi czasami życia stanów wzbudzonych w roztworze w temperaturze pokojowej [81]. Zaproponowana przez nich metoda, w skrócie określana jako podejście bichromoforowe, polega na wprowadzaniu do ligandów organicznych jako podstawników chromoforów organicznych posiadających nieemisyjny stan trypletowy (³IL) o energii zbliżonej do energii poziomu emisyjnego ³MLCT związku koordynacyjnego [82]. Dzięki zbliżonym energiom możliwe jest ustalenie się stanu równowagi pomiędzy tymi dwoma poziomami energetycznymi ³MLCT i ³IL. Gdy kąt dwuścienny pomiędzy podstawnikiem, a rdzeniem liganda organicznego w związku koordynacyjnym jest bliski 90° to mieszanie orbitali obu chromoforów jest niewielkie i chromofory zachowują swoją odrębność. Następuje emisja ze stanu ³MLCT, a stan ³IL pełni funkcję "magazynu energetycznego", co schematycznie pokazano na Rysunku 29. Zmniejszenie kąta dwuściennego pomiędzy podstawnikiem a rdzeniem liganda organicznego skutkuje częściowym "zmieszaniem" się orbitali obu chromoforów.

Rysunek 29. Rozmieszczenie poziomów energetycznych w związkach stanowiących układ bichromoforowy, w których dochodzi do wytworzenia stanu równowagi pomiędzy poziomami energetycznymi ³MLCT i ³IL.

Szczegółowe badania w tym zakresie prowadzono dla związków koordynacyjnych rutenu(II) z pochodnymi 1,10-fenantroliny i 2,2'-bipirydyny [83-85] oraz 2,2':6',2"-terpirydyny [82,86,87] modyfikowanymi podstawnikami typu antracen czy piren. Związek oznaczony numerem **I** na Rysunku 30 jest związkiem nieluminescencyjnym w temperaturze pokojowej. Wykazano, że energia stanu ³MLCT jest zdecydowanie wyższa od energii poziomu związanego z podstawnikiem antracenowym, a ten jest stanem nieemisyjnym. Zmniejszenie przerwy energetycznej pomiędzy stanami ³MLCT a ³IL_{antracen} uzyskano dzięki wprowadzeniu podstawnika antracenowego do rdzenia 2,2':6',2"-terpirydyny poprzez łącznik heterocykliczny

(związki **II-IV** na Rysunku 30). Otrzymane z zastosowaniem tych ligandów związki koordynacyjne rutenu(II) wykazywały emisję w roztworze w temperaturze pokojowej i charakteryzowały się znacznie wydłużonymi czasami zaniku emisji w porównaniu z modelowym związkiem [Ru(terpy)₂](ClO₄)₂], co przypisano ustaleniu się równowagi pomiędzy stanem ³MLCT a ³IL_{antracen}. Czas życia stanu wzbudzonego ³MLCT dla związku [Ru(terpy)₂](ClO₄)₂] wynosi 250 ps. [88]

Rysunek 30. Związki koordynacyjne rutenu(II) zawierające pochodne *terpy* modyfikowane chromoforem antracenowym wraz z czasami zaniku wyznaczonymi dla nich w roztworze MeCN w temperaturze 298 K.

Na uwagę zasługują również związki rutenu(II) ze zmodyfikowanym ligandem będącym analogiem terpirydyny, w którym boczne pirydyle zostały zastąpione przez pierścienie chinolinowe (Rysunek 31) [89]. W obydwu tych związkach dochodzi do ustalenia równowagi pomiędzy stanami ³MLCT a ³IL. Wprowadzenie pierścienia antracenowego w pozycję 4 fenylu spowodowało znaczne wydłużenie czasu zaniku dla związku VI w porównaniu ze związkiem V, gdzie chromofor organiczny stanowił tylko pierścień fenylowy. W stosunku do związków I–IV omawiane układy wykazują znacznie wydłużone czasy zaniku, co może wynikać z różnicy kątów pod jakimi atom metalu jest koordynowany przez ligand, a więc i lepszego wymieszania stanów trypletowych związanych z metalem i chromoforem organicznym.

Rysunek 31. Związki koordynacyjne rutenu(II) zawierające analogi 2,2':6',2''-terpirydyny wraz z czasami zaniku wyznaczonymi dla nich w roztworze MeCN w temperaturze 298 K.

Wydłużone czasy zaniku fosforescencji w efekcie wytworzenia się stanu równowagi pomiędzy poziomem ³MLCT a trypletem zlokalizowanym na chromoforze organicznym potwierdzono także dla szeregu związków koordynacyjnych rutenu(II) z ligandami 1,10-fenentrolinowym oraz 2,2'-bipirydynowym podstawionych pirenem. (Rysunek 32). W porównaniu do związku modelowego [Ru(bpy)₃]²⁺ o czasie zaniku 0,86 µs związek **VII** charakteryzuje się znacznie wydłużonym czasem zaniku wynoszącym 57,4 µs. Podobnie wydłużenie czasu życia nastąpiło dla związków **XIII** i **XIV** (odpowiednio czasy 2,5 i 148 µs) w stosunku do związku [Ru(phen)₃]²⁺ (0,92 µs) oraz dla związków **IX-XIII** (2,4-240 µs) w porównaniu ze związkiem wyjściowym o czasie zaniku 700 ns. Wyjątek stanowi jedynie związek **VIII**, dla którego rejestrowany czas życia wynosi jedynie 4 ns. W obrębie omawianych związków zauważyć można kilka istotnych zależności:

 zastąpienie rdzenia 2,2'-bipirydynowego w związku VII na 1,10-fenantrolinowy w związku X spowodowało wydłużenie czasu zaniku;

• pozycja przyłączenia podstawnika pirenowego do rdzenia diiminowego w związkach VIII-X oraz XI i XII ma znaczny wpływ na długość czasu zaniku. Najdłuższy czas rejestrowany jest dla związku, w którym przyłączony podstawnik powoduje najmniejszą zawadę przestrzenną;

• przyłączenie chromoforu pirenowego za pośrednictwem łącznika acetylenowego do rdzenia phen znacznie wydłużyło czasy zaniku, co obserwuje się porównując pary związków IX i XI oraz X i XII;

porównując czasy zaniku emisji dla związków X i XIV można zauważyć,
 że zwiększenie ilości ligandów 1,10-fenantrolinowych z podstawnikiem pirenowym
 pozwala na wydłużenie czasów zaniku;

• im więcej wprowadzonych podstawników pirenowych tym dłuższe czasy zaniku co widoczne jest na przykładzie porównania związków XIII i XIV.

Rysunek 32. Związki koordynacyjne rutenu(II) z ligandami 1,10-fenentrolinowym i 2,2'-bipirydynowym podstawionymi pirenem z czasami zaniku wyznaczonymi dla nich w roztworze MeCN w temperaturze 298 K.

Wpływ rozpuszczalnika na efekt bichromoforowy badano dla związków **XV** i **XVI** (Rysunek 33). W porównaniu ze związkiem modelowym, gdzie 2,2'-bipirydyna podstawiona jest dwoma grupami metylowymi w pozycji 4 i 4' oba związki wykazały wydłużenie czasów zaniku w roztworze metanolu. Dla związku modelowego czas ten wynosi 30 ns. W roztworze metanolu gdzie dochodzi do ustalenia stanu równowagi pomiędzy stanami trypletowymi, obserwuje się wydłużenie czasów zaniku do 0,26 µs i 0,46 µs dla związków **XV** i **XVI**. (Rysunek 34 (b)).

Rysunek 33. Związki koordynacyjne rutenu(II) z ligandami 2,2'-bipirydynowymi podstawionymi pirenem oraz ich czasy zaniku wyznaczone w roztworze MeOH w temperaturze 298 K.

W roztworze acetonitrylu następuje emisja z poziomu ³MLCT co skutkuje krótkimi czasami zaniku, związki **XV** i **XVI** jak i modelowy osiągają czas zaniku ~7 ns. Z kolei, w roztworze wodnym omawiane związki zostały określone jako nieemisyjne, z czasami życia poniżej 1 ns. W tym przypadku najniższym stanem trypletowym jest nieemisyjny ³IL zlokalizowany na pirenie (Rysunek 34(a)). Związek modelowy w roztworze metanolu posiada czas równy 115 ns. Wyniki potwierdzają zależność energii poszczególnych stanów i procesów transferu energii pomiędzy nimi od polarności środowiska.

Rysunek 34. Względne położenie poziomów energetycznych w związkach XV i XVI w różnych rozpuszczalnikach: wodzie (a), metanolu (b) oraz acetonitrylu (c). Rysunki zaadaptowano na podstawie pracy [91].
Intensywne badania efektu bichromoforowego w związkach koordynacyjnych renu(I) prowadziła grupa badawcza Felixa Castellano. W centrum ich naukowego zainteresowania znalazły się karbonylowe związki renu(I) z 1,10-fenantroliną [92-94], 2,2'-bipirydyną [94] oraz 2,2'-bichinoliną [94] podstawionymi pochodnymi 1,8-naftalimidu.

Pierwszym przykładem jest związek **XVII** (Rysunek 35(a)). Porównując jego właściwości z układem modelowym [Re(phen)(CO)₃CI] obserwuje się prawie 3000-krotne wydłużenie czasu zaniku luminescencji w temperaturze 298 K, z 197 ns do 650 μ s. Składowa 49 ps związana jest ze szczątkową fluorescencją związku. Szczegółowe badania procesów fotofizycznych zachodzących w tym związku po fotowzbudzeniu pozwoliły na stwierdzenie, że tak znaczne wydłużenie czasu zaniku spowodowane jest tym, że przerwa energetyczna pomiędzy stanami ³IL_{naftalimid} a ³MLCT będących w stanie równowagi jest stosunkowo duża. Wynosi ona 1680 cm⁻¹ (0,21 eV). Oznacza to, że w stanie równowagi zdecydowanie większy udział należy do stanu ³IL_{naftalimid} co sprzyja osiąganiu znacznie dłuższych czasów zaniku. Jest to przykład związku, w którym po fofowzbudzeniu dochodzi do transferu energii określanego mianem "ping-pongowego". Bezpośrednio po fotowzbudzeniu następuje transfer energii ze stanu wzbudzonego ¹IL_{naftalimid} do stanu ¹MLCT, następnie zachodzi przejście międzysystemowe ¹MLCT \rightarrow ³MLCT, po czym następuje transfer energii ze stanu ³IL_{naftalimid} (Rysunek 35(b)).

Rysunek 35. Związek koordynacyjny renu(I) ze zmodyfikowanym ligandem 1,10-fenentrolinowym i jego czas zaniku wyznaczony w roztworze THF w temperaturze 298 K (a) oraz rozmieszczenie jego poziomów energetycznych z zaznaczonym efektem "ping-pongowym". Rysunek zaadaptowano na podstawie pracy [92].

Zastąpienie liganda chlorkowego w związku **XVII** poprzez 4-dimetyloaminopirydynę i wprowadzenie kolejnych podstawników do ugrupowania 1,8-naftalimidu pozwoliło na otrzymanie kolejnej grupy związków renu(I) o wydłużonych czasach zaniku emisji (Rysunek 36).

Rysunek 36. Związki koordynacyjne renu(I) zawierające układ bichromoforowy oraz wyznaczone dla nich czasy zaniku w MeCN w temperaturze 298 K.

Czasy zaniku emisji dla związków **XVIII**, **XIX** i **XX** wynoszą odpowiednio 14,5 μs, 56,6 μs i 57,7 μs. Są one wprawdzie krótsze w porównaniu ze związkiem **XVII**, ale zdecydowanie dłuższe niż dla związku modelowego [Re(phen)(CO)₃(dmap)] (176 ns). W przypadku tych związków potwierdzono ustalenie się stanu równowagi pomiędzy ³IL_{naftalimid} i ³MLCT i wykazano, że obserwowana emisja następuje ze stanu ³MLCT, a procesy przenoszenia energii po fotowzbudzeniu są analogiczne do tych opisanych dla związku **XVII** (Rysunek 35(b)).

Natomiast dla związków **XXI** i **XXII** energia stanu ³IL_{naftalimid} jest zdecydowanie niższa i nie następuje ustalenie równowagi ze stanem ³MLCT, a dezaktywacja stanu ³IL_{naftalimid} następuje w procesie bezpromienistym. Czasy życia stanów nieemisyjnych dla związków **XXI** i **XXII** wyznaczono za pomocą absorpcji przejściowej. Wynoszą one 116 µs i 136 µs. Różnice pomiędzy tymi związkami dotyczą również procesów przenoszenia energii po fotowzbudzeniu co schematycznie pokazano na Rysunku 37(a i b).

Rysunek 37. Rozmieszczenie poziomów energetycznych z zaznaczonym transferem energii w związkach XXI (a) oraz XXII (b). Rysunek zaadaptowano na podstawie pracy [93].

Grupa Castellano analizowała również efekt bichromoforowy dla serii związków koordynacyjnych renu(I), w których chromofor organiczny (4-(N-piperydyno-1,8-naftalimid) został przyłączony do liganda pirydynowego wprowadzonego do sfery koordynacyjnej jonu renu(I) w miejsce chloru. Związki te, jak pokazano na Rysunku 38 różniły się rodzajem liganda diiminowego.

Rysunek 38. Związki koordynacyjne renu(I) w których chromofor organiczny (4-(N-piperydyno-1,8-naftalimid) został przyłączony do pirydyny.

W przypadku tych związków w stacjonarnych widmach emisyjnych zarejestrowano jedynie fluorescencję pochodzącą ze stanu związanego z chromoforem organicznym. Wskazuje to na niekompletne przejście ze stanu ¹IL_{naftalimid} do stanu ¹MLCT. Fosforescencja, która jest dużo słabsza maskowana jest przez dominującą fluorescencję chromoforu organicznego. Badania z zastosowaniem absorpcji przejściowej femto- i nanosekundowej potwierdziły jednak, że w przypadku związków XXIII-XXV dochodzi do ustalenia się stanu równowagi pomiędzy ³IL_{naftalimid} i ³MLCT i wykazano, że procesy przenoszenia energii po fotowzbudzeniu są analogiczne do tych opisanych dla związku XVII. Bezpośrednio po fotowzbudzeniu następuje niekompletny transfer energii ze stanu wzbudzonego ¹IL_{naftalimid} do stanu ¹MLCT, następnie zachodzi przejście międzysystemowe ${}^{1}MLCT \rightarrow {}^{3}MLCT$, po czym następuje transfer energii ze stanu ³MLCT do niżej energetycznego stanu zlokalizowanego na chromoforze organicznym ³IL_{naftalimid}. Czasy życia stanów nieemisyjnych dla tych związków wyznaczono za pomocą absorpcji przejściowej i wynoszą one 5110 µs, 918 µs i 1170 µs odpowiednio dla związku XXIII, XXIV i XXV. Dla związku XXVI najniższym stanem trypletowem jest ³MLCT, a jego energia jest dużo niższa niż poziomu ³IL_{naftalimid}, w efekcie czego nie dochodzi do ustalenia się stanu równowagi pomiędzy tymi poziomami (Rysunek 39). Wyznaczony za pomocą absorpcji przejściowej czas życia stanu ³MLCT wynosi 39,5 ns.

Rysunek 39. Rozmieszczenie poziomów energetycznych z opisem transferu energii dla związku XXVI. Rysunek zaadaptowano na podstawie pracy [94].

Podsumowując, podejście bichromoforowe daje możliwości otrzymania związków o wyraźnie wydłużonych czasach życia emisyjnych stanów wzbudzonych w roztworze w temperaturze pokojowej, co jest istotne w kontekście użycia ich jako materiałów do zastosowań w optoelektronice i do bioobrazowania. Pełne zrozumienie tego efektu wymaga jednak szeregu badań celem poznania zależności pomiędzy strukturą wprowadzonego chromoforu organicznego a energią i charakterem stanu trypletowego oraz kinetyką procesów transferu energii po fotowzbudzeniu. Nawet subtelna zmiana w strukturze czy zmiana polarności środowiska może być przyczyną ogromnych zmian w długości czasów zaniku luminescencji związku. W oparciu o założenia podejścia bichromoforowego zostały zaprojektowane związki koordynacyjne renu(I) będące przedmiotem badań niniejszej pracy, dla których wyniki badań zostały szczegółowe przedyskutowane w części eksperymentalnej pracy.

CZĘŚĆ DOŚWIADCZALNA

6. Stosowane odczynniki

Tabela 30. Wykaz stosowanych w pracy odczynników				
Odczynnik	Stopień czystości	Producent		
Odczynniki do syntezy ligandów				
2-acetylopirydyna	≥99%	Sigma Aldrich		
2-acetylopirazyna	\geq 99%	Sigma Aldrich		
Wodorotlenek potasu	Czysty do analizy	Sigma Aldrich		
Wodny roztwór amoniaku	Czysty do analizy	Sigma Aldrich		
1-naftaldehyd	95%	Sigma Aldrich		
2-naftaldehyd	98%	Sigma Aldrich		
Antraceno-9-karboaldehyd	97%	Sigma Aldrich		
2-bromoantracen	98%	Thermo Scientific		
Roztwór n-butylolitu w heksanie	_	Sigma Aldrich		
Fenantreno-9-karboaldehyd	97%	Sigma Aldrich		
Pireno-1-karboaldehvd	99%	Sigma Aldrich		
Toluen	99.8%	Sigma Aldrich		
Etanol	96%	Sigma Aldrich		
Eter dietylowy	> 99%	Sigma Aldrich		
DMF	99.8%	Sigma Aldrich		
CH ₂ Cl ₂	>99.8%	Sigma Aldrich		
Heksan	95%	Sigma Aldrich		
Woda destylowana				
Odazunniki do suntozu zu	iazkán koondunacyjnych Doll			
Be(CO)-Cl		Sigma Aldrich		
Taluan		Sigma Aldrich		
	99,8%	Sigina Aldrich		
Argon				
Eter dietylowy	<u>≥99%</u>	Sigma Aldrich		
Rozpuszczalniki oraz odczynniki wyko	orzystywane w badaniach spekt	roskopowych		
Acetonitryi	<u>≥ 99,9% do HPLC</u>	Sigma Aldrich		
Butyronitryl	\geq 99% do GC	Sigma Aldrich		
Chloroform	<u>≥ 99,9% do HPLC</u>	Sigma Aldrich		
Dichlorometan	\geq 99,8% do HPLC	Sigma Aldrich		
DMF	99,9% do HPLC	Sigma Aldrich		
DMSO	\geq 99,7% do HPLC	Sigma Aldrich		
Heksan	\geq 95% do HPLC	Sigma Aldrich		
Metanol	\geq 99,9% do HPLC	Sigma Aldrich		
Octan etylu	\geq 99,7% do HPLC	Sigma Aldrich		
THF	\geq 99,9% do HPLC	Sigma Aldrich		
Toluen	99,9% do HPLC	Sigma Aldrich		
LUDOX [®] (40% zawiesina wodna)	Spektroskopowo czysty	Sigma Aldrich		
Bromek potasu	Spektroskopowo czysty	Sigma Aldrich		
Chloroform deuterowany	Spektroskopowo czysty	Sigma Aldrich		
DMSO deuterowany	Spektroskopowo czysty	Sigma Aldrich		
Odczynniki wykorzystywane w elektrochemii i elektroluminescencji				
Bu ₄ NPF ₆	≥99%	Sigma Aldrich		
Dichlorometan	99,8 %	Sigma Aldrich		
Poli(9-winylocarbazol) PVK ($M_n = 25\ 000 -$	_	Sigma Aldrich		
50 000) Signia Aldrei				
Poli(3,4-(etylenodioksy)tiofen): poli- (styrenosiarczan) PEDOT:PSS (0,1–1,0 S/cm)	_	Ossila		
Pikselowane anody ITO	—	Ossila		
2-(4-tert-butylofenyl)-1,2,4-oksadiazol PBD	_	Sigma Aldrich		

7. Metody syntezy

7.1. Synteza antraceno-2-karboaldehydu

W kolbie okrągłodennej dwuszyjnej zabezpieczonej gumowym septum oraz bubblerem do ciągłego przepływu argonu umieszczono 2g (7,80 mmola) 2-bromoantracenu. Następnie do kolby dolano 80 cm³ eteru dietylowego. Tak powstałą mieszaninę umieszczono w łaźni lodowej na mieszadle magnetycznym. Podczas aktywnego mieszania i stałego argonowania mieszaninę reakcyjną schłodzono do temperatury 0°C i dodano kroplami 10,5 cm³ (1,6 M) roztowru n-BuLi w heksanie. Mieszanie kontynuowano przez kolejne 10 minut, po czym usunięto łaźnie lodową w celu doprowadzenia mieszaniny do temperatury pokojowej i utrzymywania jej w tej temperaturze przez 30 minut. Po tym czasie całość ponownie schłodzono do 0°C przy użyciu łaźni lodowej. Kolejno do mieszaniny reakcyjnej poprzez gumowe septum dodano strzykawką 10 cm³ DMF-u. Łaźnie lodową usunięto, a reakcję pozostawiono z aktywnym mieszaniem na 24h. Otrzymaną mieszaninę poreakcyjną poddano ekstrakcji w układzie CH₂Cl₂:H₂O, a następnie surowy produkt oczyszczono za pomocą chromatografii kolumnowej stosując SiO₂ jako fazę stałą oraz mieszaninę heksan: CH₂Cl₂ jako eluent [95].

Wszystkie pozostałe aldehydy niezbędne do syntezy arylowych pochodnych 2,2':6',2"-terpirydyny i 2,6-di(pirazyn-2-ylo)pirydyny były dostępne komercyjnie i zostały użyte bez wcześniejszego oczyszczania.

7.2. Synteza pochodnych 2,2':6',2"-terpirydyny

Arylowe pochodne 2,2':6',2"-terpirydyny (*Ar-terpy*) uzyskane zostały w reakcji kondensacji Kröhnke'go. W kolbie okrągłodennej o pojemności 250 cm³ umieszczono 10 mmol odpowiedniego aldehydu arylowego rozpuszczonego w 75 cm³ etanolu i dodano 20,00 mmol 2-acetylopirydyny (2,42 g). Następnie dodano 27,50 mmol (1,54 g) wodorotlenku potasu i 35 cm³ wodnego roztworu amoniaku. Mieszaninę ogrzewano pod chłodnicą zwrotną przez 24 godziny. Po upływie tego czasu uzyskany osad odsączono i przemyto wodą destylowaną. Następnie osad poddano procesowi krystalizacji z roztworu etanolu. W formie monokrystalicznej uzyskano związek L^{1A}.

Tabela 31. Dane eksperymentalne charakteryzujące pochodne 2,2':6',2''-terpirydyny (Ar-terpy)					
Ar					
		Ń Ň			
	A n	Dana akanamumantalna			
	AI	Wydainość: 27%			
L ^{1A}	$\langle \rangle$	IR (KBr, cm ⁻¹) 1583 (s), 1566 (s), 1543 (m), 1468 (s), 1431 (w), 1392 (s), 1340 (w), 1261 (m), 1158 (w), 1072 (w), 1043 (w), 1023 (w), 986 (w), 888 (w), 864 (w), 792 (s), 776 (s), 743 (m), 666 (m), 653 (w), 637 (w), 623 (w), 580 (w), 443 (w). ¹H NMR (400 MHz, CDCl ₃ ppm) δ 8,73 (d, <i>J</i> = 7,9 Hz, 2H), 8,68 (d, <i>J</i> = 3,5 Hz, 2H), 8,64 (s, 2H), 8,00 – 7,82 (m, 5H), 7,62 – 7,43 (m, 4H), 7,38 – 7,30 (m, 2H). ¹³ C NMR (100 MHz, CDCl ₃ ppm) δ 156,4, 155,6, 150,9, 149,3, 138,1, 136,9, 133,8, 131,1, 128,8, 128,5, 127,1, 126,7, 126,1, 125,7, 125,4, 123,9, 122,5, 121,5. Analiza elementarna obliczona dla C ₂₅ H ₁₇ N ₃ (359,42 g/mol): C, 83,54; H, 4,77; N, 11,69 %; otrzymano: C, 83,91; H, 4,87; N, 11,91 %. TGA: T ₅ = 309 °C, T ₁₀ = 326 °C, T _{max} = 387 °C			
L ^{2A}		Wydajność: 42% IR (KBr, cm ⁻¹) 1602 (m), 1584 (s), 1565 (s), 1545 (m), 1506 (w), 1466 (s), 1435 (m), 1396 (s), 1355 (w), 1266 (w), 1120 (w), 1074 (w), 1041 (w), 989 (w), 893 (w), 869 (m), 825 (m), 792 (s), 757 (s), 735 (m), 681 (w), 658 (w), 612 (w), 554 (w), 4481 (m). ¹H NMR (400 MHz, CDCl ₃ ppm) δ 8,88 (s, 2H), 8,76 (d, $J = 4,0$ Hz, 2H), 8,70 (d, $J = 7,9$ Hz, 2H), 8,41 (s, 1H), 8,03 (dd, $J = 8,6, 1,7$ Hz, 1H), 8,00 – 7,95 (m, 2H), 7,94 – 7,83 (m, 3H), 7,57 – 7,50 (m, 2H), 7,40 – 7,33 (m, 2H). ¹³C NMR (100 MHz, CDCl ₃ ppm) δ 156,4, 156,1, 150,3, 149,2, 137,0, 135,8, 133,7, 133,6, 128,8, 128,7, 127,8, 126,8, 126,8, 126,6, 125,1, 123,9, 121,5, 119,2. Analiza elementarna obliczona dla C ₂₅ H ₁₇ N ₃ (359,42 g/mol): C, 83,54; H, 4,77; N, 11,69 %; otrzymano: C, 83,83; H, 4,76; N, 11,57 %. TGA: T ₅ = 307 °C, T ₁₀ = 327 °C, T _{max} = 388 °C			
L ^{3A}		Wydajność: 46% IR (KBr, cm ⁻¹) 1583 (s), 1567 (s), 1519 (m), 1464 (s), 1443 (w), 1391 (s), 1312 (w), 1263 (w), 1116 (w), 1071 (w), 1015 (w), 990 (w), 893 (m), 853 (m), 794 (s), 737 (s), 682 (w), 653 (m), 637 (w), 626 (w), 533 (w), 419 (w). ¹ H NMR (400 MHz, CDCl ₃ ppm) δ 8,80 (d, $J = 8,0$ Hz, 2H), 8,64 (d, $J = 4,4$ Hz, 2H), 8,61 (s, 2H), 8,55 (s, 1H), 8,07 (d, $J = 8,5$ Hz, 2H), 7,92 (t, $J = 7,7$ Hz, 2H), 7,71 (d, $J = 8,8$ Hz, 2H), 7,50 – 7,44 (m, 2H), 7,39 – 7,32 (m, 4H). ¹³ C NMR (100 MHz, CDCl ₃ ppm) δ 156,3, 155,8, 149,6, 149,3, 137,0, 134,4, 131,4, 129,7, 128,5, 127,5, 126,5, 125,9, 125,3, 124,0, 123,9, 121,5. Analiza elementarna obliczona dla C ₂₉ H ₁₉ N ₃ (409,48 g/mol): C, 85,06; H, 4,67; N, 10,26 %; otrzymano: C, 84,72; H, 4,78; N, 9,82 %. TGA: T ₅ = 333 °C, T ₁₀ = 356 °C, T _{max} = 419 °C			
L ^{4A}		Wydajność: 19% IR (KBr, cm ⁻¹) 1600 (m), 1583 (s), 1564 (s), 1549 (m), 1438 (w), 1410 (w), 1390 (s), 1306 (w), 1263 (w), 1160 (w), 1120 (w), 1087 (w), 1073 (w), 1038 (w), 989 (w), 962 (w), 912 (m), 891 (s), 837 (w), 790 (s), 750 (s), 733 (m), 665 (w), 658 (w), 622 (w), 592 (w), 568 (w), 536 (w), 518 (w), 476 (m), 466 (m). ¹ H NMR (400 MHz, CDCl ₃ ppm) δ 8,97 (s, 2H), 8,79 (d, $J = 3,9$ Hz, 2H), 8,75 (d, $J = 7,2$ Hz, 2H), 8,63 (s, 1H), 8,59 (s, 1H), 8,48 (s, 1H), 8,16 (d, $J = 8,8$ Hz, 1H), 8,07 - 8,03 (m, 3H), 7,94 (t, $J = 7,3$ Hz, 2H), 7,52 - 7,49 (m, 2H), 7,43 - 7,39 (m, 2H). ¹³ C NMR (100 MHz, CDCl ₃ ppm) δ 156,2, 156,0, 150,4, 149,1, 137,3, 137,2, 132,4, 132,2, 131,7, 131,6, 129,2, 128,5, 128,3, 127,5, 127,2, 126,2, 125,9, 125,8, 124,7, 124,1, 121,7, 119,3. Analiza elementarna obliczona dla C ₂₉ H ₁₉ N ₃ (409,48 g/mol): C, 85,06; H, 4,67; N, 10,26 %; otrzymano: C, 84,83; H, 4,63; N, 9,91 %. TGA: T ₅ = 339 °C, T ₁₀ = 359 °C, T _{max} = 420 °C			

		Wydajność: 54%
		IR (KBr, cm ⁻¹) 1604 (w), 1584 (s), 1567 (m), 1542 (m), 1466 (s), 1449 (w), 1425 (w),
		1394 (w), 1382 (w), 1296 (w), 1264 (w), 1244 (w), 1221 (w), 1150 (w), 1113 (w),
		1097 (w), 1069 (w), 1043 (w), 992 (w), 895 (m), 868 (w), 793 (s), 766 (s), 749 (s),
		726 (s), 669 (m), 655 (m), 623 (w), 570 (w), 521 (w), 508 (w), 427 (w).
		¹ H NMR (400 MHz, CDCl ₃ ppm) δ 8,80 (d, $J = 8,3$ Hz, 1H), 8,77 - 8,73 (m, 3H),
		8,70 (s, 3H), $8,69 - 8,68$ (m, 1H), $7,99$ (d, $J = 8,2$ Hz, 1H), $7,94 - 7,89$ (m, 3H),
L ^{5A}		7,86 (s, 1H), 7,74 – 7,68 (m, 2H), 7,64 (t, $J = 7,4$ Hz, 1H), 7,57 (t, $J = 7,6$ Hz, 1H),
		7,37 – 7,33 (m, 2H).
		¹³ C NMR (100 MHz, CDCl ₃ ppm) δ 156,2, 155,6, 151,0, 149,2, 137,1, 136,6, 131,4,
	1	130,7, 130,5, 130,3, 129,0, 128,0, 127,1, 127,0, 127,0, 126,8, 126,6, 124,0, 123,1,
		122,7, 122,5, 121,6.
		Analiza elementarna obliczona dla C ₂₉ H ₁₉ N ₃ (409,48 g/mol): C, 85,06; H, 4,67;
		N, 10,26 %; otrzymano: C, 85,14; H, 4,69; N, 9,37 %.
		TGA: $T_5 = 339 \text{ °C}, T_{10} = 360 \text{ °C}, T_{max} = 432 \text{ °C}$
		Wydajność: 64%
		IR (KBr, cm ⁻¹) 1601 (m), 1583 (s), 1563 (s), 1534 (m), 1464 (m), 1434 (w), 1397 (m),
		1387 (m), 1265 (w), 1244 (w), 1190 (w), 1116 (w), 1085 (w), 1069 (w), 1028 (w),
		989 (w), 908 (w), 843 (s), 789 (m), 737 (m), 721 (m), 680 (m), 662 (m), 622 (w),
		592 (w), 518 (w).
		¹ H NMR (400 MHz, CDCl ₃ ppm) δ 8,78 (s, 2H), 8,76 (d, $J = 8,0$ Hz, 2H), 8,70
T 6A		(d, J = 4,7 Hz, 2H), 8,28 - 8,22 (m, 3H), 8,19 (d, J = 7,6 Hz, 1H), 8,14 - 8,12
		(m, 3H), 8,09 – 8,01 (m, 2H), 7,92 (dt, <i>J</i> = 7,8, 1,7 Hz, 2H), 7,38 – 7,34 (m, 2H).
		¹³ C NMR (100 MHz, CDCl ₃ ppm) δ 156,3, 155,7, 151,4, 149,3, 137,0, 135,3, 131,5,
	L.	131,4, 131,0, 128,4, 128,3, 128,0, 127,5, 127,4, 126,2, 125,5, 125,2, 125,0, 124,9,
		124,8, 124,8, 124,0, 123,0, 121,6.
		Analiza elementarna obliczona dla C ₃₁ H ₁₉ N ₃ (433,50 g/mol): C, 85,89; H, 4,42;
		N, 9,69 %; otrzymano: C, 85,69; H, 4,231; N, 9,28 %.
		TGA: $T_5 = 361 \text{ °C}, T_{10} = 382 \text{ °C}, T_{max} = 444 \text{ °C}$

7.3. Synteza pochodnych 2,6-di(pirazyn-2-ylo)pirydyny

Pochodne 2,6-di(pirazyn-2-ylo)pirydyny (*Ar-dppy*) uzyskane zostały w reakcji kondensacji Kröhnke'go. W kolbie stożkowej z korkiem o pojemności 250 cm³ umieszczono 10 mmol odpowiedniego aldehydu arylowego rozpuszczonego w 75 cm³ etanolu i dodano 20,00 mmol 2-acetylopirazyny (2,44 g). Następnie dodano 27,50 mmol (1,54 g) wodorotlenku potasu i 35 cm³ wodnego roztworu amoniaku. Tak przygotowaną mieszaninę poddano intensywnemu mieszaniu przez 24 godziny w temperaturze pokojowej z zastosowaniem mieszadła magnetycznego. Po upływie tego czasu uzyskany osad odsączono i przemyto wodą destylowaną do uzyskania odczynu obojętnego (pH = 7). Następnie osad poddano procesowi krystalizacji z roztworu toluenu. W formie monokrystalicznej uzyskano związek L^{1B}.

I abela 32. Dane eksperymentalne charakteryzujące pochodne 2,6-di(pirazyn-2-ylo)pirydyny (<i>Ar-dppy</i>).				
		$\mathbb{N}^{\times} \cong \mathbb{N}^{\times} \cong \mathbb{N}$		
	Ar	Dane eksperymentalne		
		Wydajność: 55%		
L ^{1B}		IK (KB1, cm ²) 1001 (s), 1308 (m), 1322 (m), 1409 (s), 1431 (w), 1396 (w), 1372 (s), 1267 (w), 1245 (m), 1163 (w), 1146 (w), 1114 (s), 1051 (m), 1016 (s), 993 (w), 911 (w), 857 (s), 801 (s), 776 (s), 708 (w), 692 (w), 625 (m), 530 (w), 485 (w), 436 (w). ¹H NMR (400 MHz, CDCl ₃ , ppm) δ 9,93 (d, $J = 1.4$ Hz, 2H, H ^{A4}), 8,66 (d, $J = 2.4$ Hz, 2H, H ^{A1}), 8,65 (s, 2H, H ^{B2}), 8,63 – 8,62 (m, 2H, H ^{A2}), 7,96 (d, $J = 7.4$ Hz, 2H, H ^{C4, C6}), 7,93 (d, $J = 8.5$ Hz, 1H, H ^{C9}), 7,60 – 7,57 (m, 2H, H ^{C2, C3}), 7,56 – 7,53 (m, 1H, H ^{C7}), 7,52 – 7,49 (m, 1H, H ^{C8}). 1 ³ C NMR (100 MHz, CDCl ₃ , ppm) δ 154,1 (C ^{B1}), 151,5 (C ^{A5}), 151,1 (C ^{B3}), 144,6 (C ^{A1}), 143,9 (C ^{A4}), 143,5 (C ^{A2}), 137,3 (C ^{C1}), 133,9 (C ^{C5}), 130,9 (C ^{C10}), 129,3 (C ^{C4}), 128,7 (C ^{C6}), 127,2 (C ^{C8}), 126,9 (C ^{C2}), 126,3 (C ^{C3}), 125,4 (C ^{C7}), 125,2 (C ^{C9}), 123,6 (C ^{B2}). Analiza elementarna obliczona dla C ₂₃ H ₁₅ N ₅ (361,40 g/mol): C, 76,44; H, 4,18;		
		N, 19,38%; otrzymano: C, 76,62; H, 3,98; N, 19,62%.		
		TGA: $T_5 = 299 ^{\circ}\text{C}$, $T_{10} = 314 ^{\circ}\text{C}$, $T_{\text{max}} = 369 ^{\circ}\text{C}$ Wydainość: 53%		
L ^{2B}		Wydajnosc: 53% IR (KBr, cm ⁻¹) 1601 (s), 1570 (m), 1520 (w), 1505 (w), 1472 (s), 1427 (s), 1375 (s), 1354 (w), 1337 (w), 1244 (m), 1183 (m), 1162 (m), 1114 (s), 1051 (m), 1033 (s), 1017 (s), 995 (w), 892 (m), 854 (s), 823 (s), 754 (s), 709 (m), 690 (m), 613 (w), 554 (m), 479 (m), 439 (w). ¹ H NMR (400 MHz, CDCl ₃ ppm) δ 9,91 (d, $J = 1,3$ Hz, 2H), 8,87 (s, 2H), 8,74 – 8,69 (m, 4H), 8,37 (s, 1H), 8,05 – 7,99 (m, 3H), 7,97 – 7,91 (m, 1H), 7,62 – 7,56 (m, 2H). ¹³ C NMR (100 MHz, CDCl ₃ ppm) δ 154,7, 151,0, 150,9, 145,0, 143,9, 143,7, 135,2, 133,9, 133,7, 129,2, 128,8, 127,9, 127,2, 126,9, 126,9, 124,8, 120,2. Analiza elementarna obliczona dla C _{23H15} N ₅ (361,40 g/mol): C, 76,44; H, 4,18; N, 19,38%; otrzymano: C, 76,84; H, 4,02; N, 18,88%. TGA: T ₅ = 310 °C, T ₁₀ = 325 °C, T _{max} = 386 °C		
L ^{3B}		Wydajność: 58% IR (KBr, cm ⁻¹) 1604 (m), 1557 (w), 1519 (m), 1467 (s), 1444 (w), 1371 (s), 1320 (w), 1279 (w), 1245 (w), 1176 (w), 1161 (w), 1113 (s), 1051 (w), 1017 (s), 955 (w), 885 (m), 858 (s), 840 (m), 788 (m), 742 (s), 701 (w), 659 (w), 629 (w), 523 (w), 481 (w), 419 (w). ¹ H NMR (400 MHz, CDCl ₃ ppm) δ 9,99 (d, $J = 1,4$ Hz, 2H), 8,66 (d, $J = 2,4$ Hz, 2H), 8,63 (s, 2H), 8,60 – 8,56 (m, 3H), 8,10 (d, $J = 8,5$ Hz, 2H), 7,67 (d, $J = 8,8$ Hz, 2H), 7,53 – 7,46 (m, 2H), 7,43 – 7,35 (m, 2H). ¹³ C NMR (100 MHz, CDCl ₃ ppm) δ 154,6, 151,1, 150,4, 144,9, 143,9, 143,8, 133,7, 131,5, 129,7, 128,8, 128,0, 126,4, 126,1, 125,5, 125,1. Analiza elementarna obliczona dla C ₂₇ H ₁₇ N ₅ (411,46 g/mol): C, 78,81; H, 4,16; N, 17,02%; otrzymano: C, 78,41; H, 4,03; N, 16,90%. TGA: T ₅ = 357 °C, T ₁₀ = 370 °C, T _{max} = 416 °C		
	\sim	Wydajność: 51%		
L ^{5B}		IR (KBr, cm ⁻¹) 1602 (s), 1569 (w), 1552 (w), 1471 (m), 1450 (w), 1424 (w), 1388 (m), 1370 (m), 1246 (m), 1185 (w), 1163 (m), 1114 (s), 1054 (m), 1042 (w), 1020 (s), 916 (w), 887 (w), 860 (s), 759 (w), 738 (s), 722 (s), 692 (w), 685 (w), 663 (w), 619 (w), 569 (w), 507 (w), 418 (w). ¹H NMR (400 MHz, CDCl ₃ ppm) δ 9,94 (d, J = 1,3 Hz, 2H), 8,82 (d, J = 8,3 Hz, 1H), 8,76 (d, J = 8.3 Hz, 1H), 8,70 (s, 2H), 8,67 – 8,62 (m, 4H), 7.94		

Tabela 32. Dane eksperymentalne charakteryzujące pochodne 2,6-di(pirazyn-2-ylo)pirydyny (Ar-dppy).

* związek L^{4B} został wyizolowany w formie trudno rozpuszczalnego osadu i było niemożliwym dokonanie jego pełnej charakteryzacji pozwalającej na oznaczenie struktury oraz czystości.

7.4. Synteza związków koordynacyjnych renu(I) z pochodnymi 2,2':6',2"-terpirydyny i 2,6-di(pirazyn-2-ylo)pirydyny

Reakcja otrzymywania związków koordynacyjnych renu(I) z pochodnymi 2,2':6',2"-terpirydyny i 2,6-di(pirazyn-2-ylo)pirydyny została przeprowadzona na dwa sposoby.

W pierwszej metodzie 0,1 g (0,28 mmol) Re(CO)₅Cl oraz 0,28 mmol odpowiedniego liganda rozpuszczono w 35 cm³ toluenu i ogrzewano w temperaturze wrzenia rozpuszczalnika w kolbie okrągłodennej umieszczonej pod chłodnicą zwrotną przez 8 godzin. Reakcję prowadzono w atmosferze argonu. Po zakończeniu reakcji otrzymany osad przesączono i przemyto kilkoma małymi ilościami eteru dietylowego lub gdy w wyniku reakcji nie powstał osad mieszaninę reakcyjną pozostawiano na kilka dni do powolnego odparowania w temperaturze pokojowej i wytrącenia się osadu związku koordynacyjnego. Po odsączeniu, osad był przemywany kilkoma małymi porcjami eteru dietylowego.

Druga metoda oparta była również na reakcji Re(CO)₅Cl z odpowiednim ligandem, ale syntezę prowadzono w autoklawie. W reaktorze teflonowym umieszczono 0,1 g (0,28 mmol) Re(CO)₅Cl oraz 0,28 mmol odpowiedniego liganda rozpuszczonego w 25 cm³ toluenu. Reaktory ogrzewano do temperatury 130°C przez 21 godzin i utrzymywano w tej temperaturze przez 36 godzin. Następnie mieszaninę reakcyjną powoli ochładzano przez 45 godzin do temperatury pokojowej. Osad otrzymany w wyniku tak prowadzonej syntezy odsączano, a następnie przemywano kilkoma niewielkimi ilościami eteru dietylowego. Wydajności otrzymywania karbonylków renu(I) w obydwu metodach były porównywalne.

Ar			
	Ar IIIII		
	1A $2A$ $3A$		
	$[\text{ReCl(CO)}_3(\text{Ar-terpy-}\kappa^2\text{N})]$		
	(1A-6A)		
	4A 5A 6A		
Oznaczenie	Dane ekspervmentalne		
	Wydainość: 90%		
	IB (KBr cm ⁻¹) 2020 (vs) 1915 (vs) 1892 (vs) $v(C=0)$: 1612 (m) $v(C=N)iv(C=C)$		
	¹ H NMR (400 MHz DMSO ppm) δ 9 10 (d. $J = 5.1$ Hz 1H H ^{C1}) 9 04 (s. 1H H ^{B4}) 8 96		
	(d. $J = 8.2$ Hz, 1H, H ^{C4}), 8.79 (d. $J = 4.3$ Hz, 1H, H ^{A1}), 8.33 (t. $J = 7.8$ Hz, 1H, H ^{C3}), 8.15		
	(d, $J = 8.2$ Hz, 1H, H ^{D9}), 8.11 (d, $J = 8.6$ Hz, 1H, H ^{D6}), 8.05 (t, $J = 7.7$ Hz, 1H, H ^{A3}), 8.00		
	(s. 1H, H ^{B2}), 7.98 – 7.90 (m, 2H, H ^{A4+D4}), 7.78 (t. $J = 6.5$ Hz, 2H, H ^{C2+D8}), 7.71		
	$(t, J = 7, 6 \text{ Hz}, 1\text{H}, \text{H}^{\text{D2}}), 7, 67 - 7, 59 \text{ (m, 3H, H}^{\text{A2+D7+D3}}).$		
	¹³ C NMR (100 MHz, DMSO, ppm) δ 197,72 (C ^{CO}), 194,49 (C ^{CO}), 190,98 (C ^{CO}), 161,00 (C ^{B1}),		
1A	157,61 (C ^{A5}), $156,79$ (C ^{B5}), $156,23$ (C ^{C5}), $152,75$ (C ^{C1}), $151,74$ (C ^{B3}), $149,26$ (C ^{A1}), $140,02$		
	$(C^{C3}), 136,90 (C^{A3}), 134,74 (C^{D5}), 133,35 (C^{D10}), 129,99 (C^{D9}), 128,87 (C^{D6}), 128,18 (C^{B2}),$		
	127,95 (C ^{D8}), $127,54$ (C ^{C2}), $126,57$ (C ^{D2}), $125,60$ (C ^{C4}), $125,47$ (C ^{D7}), $125,29$ (C ^{A2}), $125,25$		
	$(C^{D3}), 124,98 (C^{B4}), 124,60 (C^{D4}), 124.37 (C^{A4}).$		
	HRMS (ESI) (m/z): [M-Cl] ⁺ obliczone dla [C ₂₈ H ₁₇ N ₃ O ₃ Re] ⁺ 630,0827. Znaleziono 630,0825.		
	Analiza elementarna obliczona dla C ₂₈ H ₁₇ ClN ₃ O ₃ Re · ³ / ₄ C ₇ H ₈ (734,21 g/mol): C, 54,39;		
	H, 3,16; N, 5,72 %; otrzymano: C, 54,79; H, 2,93; N, 5,71 %.		
	DSC: I skan: przejście kryształ \rightarrow kryształ =147, 169°C; T _m =266°C, T _c =272°C; T _m =291°C;		
	II skan: $T_g=175 \text{ °C}$, $T_c=280 \text{ °C}$, $T_m=301 \text{ °C}$.		
	Wydajność: 87%		
	IR (KBr, cm ⁻¹) 2019 (vs), 1914 (vs), 1876 (vs) v (C=O); 1613 (m), v (C=N) i v (C=C).		
	¹ H NMR (400 MHz, DMSO ppm) δ 9,25 (s, 1H, H ^{B4}), 9,17 (d, $J = 8,3$ Hz, 1H, H ^{C4}), 9,09		
	$(d, J = 5,0 \text{ Hz}, 1\text{H}, \text{H}^{\text{C1}}), 8,87 \text{ (s, 1H, H}^{\text{D10}}), 8,82 \text{ (d, } J = 4,6 \text{ Hz}, 1\text{H}, \text{H}^{\text{A1}}), 8,42$		
	$(t, J = 7,7 \text{ Hz}, 1\text{H}, \text{H}^{C3}), 8,38 - 8,31 \text{ (m, 2H, H}^{B2+D3}), 8,16 \text{ (d, } J = 8,7 \text{ Hz}, 1\text{H}, \text{H}^{D2}),$		
	8,13 - 8,02 (m, 3H, H ^{A3+D3+D6}), 7,94 (d, $J = 7,8$ Hz, 1H, H ^{A4}), 7,83 - 7,76 (m, 1H, H ^{C2}),		
	$(1,08 - 7,01 \text{ (m}, 3H, H^{12}, 1000))$.		
2A	$^{-1}$ C NMR (100 MHZ, DMSO ppin) 0 197,81 (C ⁻²), 194,40 (C ⁻²), 190,99 (C ⁻²), 101,48 (C ⁻²), 157 00 (CA5) 157 10 (C ^{C5}) 156 30 (CB5) 152 73 (C ^{C1}) 150 50 (CD1) 140 27 (CA1) 130 05		
	(C^{C3}) 136 95 (C^{A3}) 133 84 (C^{D9}) 133 00 (C^{D4}) 131 97 (C^{B3}) 128 89 (C^{D2}) 128 20 (C^{D10})		
	$(2^{\circ}), 130, 35 (2^{\circ}), 135, 54 (2^{\circ}), 135, 50 (2^{\circ}), 131, 7 (2^{\circ}), 120, 55 (2^{\circ}), 120, 20 (2^{\circ$		
	(C^{D7}) 124 97 (C^{D6}) 124 56 (C^{B2}) 124 48 (C^{D3}) 120 76 (C^{B4})		
	HRMS (ESI) (m/z) : $[M-C1]^+$ obliczone dla $[C_{28}H_{17}N_3O_3Re]^+$ 630.0827. Znaleziono 630.0826.		
	Analiza elementarna obliczona dla $C_{28}H_{17}CIN_{3}O_{3}Re^{-1/_{8}}H_{2}O$ (676.62 g/mol): C. 51.26:		
	H, 2,68; N, 6,21%; otrzymano: C, 50,89; H, 2,57; N, 6,32%.		
	DSC: I skan: przejście kryształ \rightarrow kryształ =209 °C; T _m =288, 298 °C; II skan: T _g =196 °C.		
	Wydajność: 80%		
	IR (KBr, cm ⁻¹) 2023 (vs), 1926 (vs), 1896 (vs) v (C=O); 1611 (m), v (C=N) i v (C=C).		
	¹ H NMR (400 MHz, DMSO ppm) δ 9,14 (d, $J = 5,2$ Hz, 1H, H ^{C1}), 9,06 (s, 1H, H ^{D8}),		
	8,90 - 8,84 (m, 2H, H ^{B4, C4}), $8,78$ (d, $J = 4,5$ Hz, 1H, H ^{A1}), $8,31 - 8,21$ (m, 3H, H ^{C3, D3, D13}),		
34	8,07 - 7,97 (m, 3H, H ^{B2, D6, D10}), 7,79 - 7,75 (m, 1H, H ^{C2}), 7,73 (d, $J = 8,9$ Hz, 1H, H ^{A4}),		
JA	$7,65 - 7,47 \text{ (m, 6H, H}^{A2, A3, D4, D5, D11, D12)}.$		
	¹³ C NMR (100 MHz, DMSO ppm) δ 197,74 (C ^{CO}), 194,54 (C ^{CO}), 191,20 (C ^{CO}), 161,16 (C ^{B1}),		
	157,35 (C ^{A5}), 157,26 (C ^{B5}), 156,36 (C ^{C5}), 152,83 (C ^{C1}), 150,96 (C ^{D1}), 149,19 (C ^{A1}), 140,03		
	$(C^{C_3}), 137,31 (C^{B_3}), 136,88 (C^{B_2}), 131,26 (C^{D_2}), 130,72 (C^{D_7}), 130,68 (C^{D_9}), 129,54 (C^{D_3}), 129,54 (C^{D_3}),$		
	$ 128,74 (C^{D14}), 128,66 (C^{D0}), 128,60 (C^{D10}), 128,41 (C^{C4}), 127,45 (C^{C2}), 127,07 (C^{D4}), 126,92 $		

Tabela 33. Dane eksperymentalne opisujące związki [ReCl(CO)₃(Ar-terpy-κ²N)] i [ReCl(CO)₃(Ar-dppy-κ²N)].

	$(C^{D5}), 126,15 (C^{D8}), 125,68 (C^{D12}), 125,66 (C^{D11}), 125,51 (C^{A4}), 125,46 (C^{B4}), 125,27 (C^{D13}),$			
	125,04 (C ^{A3}), $124,79$ (C ^{A2}).			
	HRMIS (ESI) (m/Z) : $[M-CI]$ obliczone dla $[C_{32}H_{19}N_3O_3Ke]$ $\delta\delta 0,0984$. Zhaleziono $\delta\delta 0,0987$.			
	Analiza elementarna obliczona dla $C_{32}H_{19}CIN_3O_3Re$ (/15,1/ g/mol): C, 53,/4; H, 2,08;			
	N, 5,88%; otrzymano: C, 53,65; H, $2,74$; N, 5,80%.			
	DSC: I skan: $I_m = 1 / / °C$; II skan: $I_g = 206 °C$.			
4 A	Wydajnosc: 75% IR (KBr, cm ⁻¹) 2021 (vs), 1915 (vs), 1893 (vs) v (C=O); 1611 (m), v (C=N) i v (C=C). ¹ H NMR ¹ H NMR (400 MHz, DMSO ppm) δ 9,28 (s, 1H), 9,17 (d, $J = 8,3$ Hz, 1H), 9,10 – 9,07 (m, 2H), 8,83 (d, $J = 4,8$ Hz, 1H), 8,77 (s, 1H), 8,70 (s, 1H), 8,46 – 8,39 (m, 2H), 8,35 – 8,28 (m, 2H), 8,16 (t, $J = 8,2$ Hz, 2H), 8,09 (t, $J = 7,5$ Hz, 1H), 7,96 (d, $J = 7,7$ Hz, 1H), 7,80 (t, $J = 6,6$ Hz, 1H), 7,68 – 7,63 (m, 1H), 7,63 – 7,56 (m, 2H). Widmo ¹³ C NMR nie zostało zarejestrowane ze względu na niewystarczającą rozpuszczalność próbki. HRMS (ESI) (m/z): [M-C1] ⁺ obliczone dla [C ₃₂ H ₁₉ N ₃ O ₃ Re] ⁺ 680,0984. Znaleziono 680,0986.			
	Analiza elementarna obliczona dla C ₃₂ H ₁₉ ClN ₃ O ₃ Re· 2 H ₂ O (751,17 g/mol): C, 51,16;			
	H, 3,09; N, 5,59%; otrzymano: C, 51,34; H, 2,83; N, 5,45%.			
	DSC: I skan:= T_m =217 °C; II skan: T_g =198 °C.			
5A	Wydajność: 63% IR (KBr, cm ⁻¹) 2021 (vs), 1911 (vs), 1876 (vs) v (C=O); 1609 (m), v (C=N)i v (C=C). ¹ H NMR (400 MHz, DMSO ppm) δ 9,12 – 9,09 (m, 2H), 9,00 (d, J = 8,3 Hz, 1H), 8,94 (t, J = 8,5 Hz, 2H), 8,80 (d, J = 4,5 Hz, 1H), 8,33 (t, J = 7,6 Hz, 1H), 8,14 (s, 1H), 8,12 (d, J = 7,4 Hz, 1H), 8,08 – 8,03 (m, 2H), 7,99 – 7,92 (m, 2H), 7,83 – 7,68 (m, 6H), 7,62 (dd, J = 6,8, 5,4 Hz, 1H). ¹³ C NMR (100 MHz, DMSO ppm) δ 197,73, 194,50, 191,00, 161,09, 157,63, 156,84, 156,24, 155,29, 154,87, 152,78, 151,85, 149,41, 149,28, 140,04, 136,91, 133,52, 130,57, 130,19, 130,14, 129,24, 129,02, 128,77, 128,13, 127,64, 127,48, 127,43, 125,48, 125,28, 125,00, 124,63, 123,70, 122,97. HRMS (ESI) (m/z): [M-Cl] ⁺ obliczone dla [C ₃₂ H ₁₉ N ₃ O ₃ Re] ⁺ 680,0984. Znaleziono 680,0981. Analiza elementarna obliczona dla C ₃₂ H ₁₉ ClN ₃ O ₃ Re (715,17 g/mol): C, 53,74; H, 2,68; N, 5,88%; otrzymano: C, 54,10; H, 2,60; N, 6,06%. DSC: L skap: T = 297 °C: II skap: T = 238 °C			
	DSC. 1 Skall. 1_m -2.77 °C, 11 Skall. 1_g -2.58 °C. Wydainość: 70%			
6A	IR (KBr, cm ⁻¹) 2020 (vs), 1913 (vs), 1880 (vs) $v(C=O)$; 1610 (m), $v(C=N)$ i $v(C=C)$. ¹H NMR (400 MHz, DMSO ppm) δ 9,19 (s, 1H), 9,13 (d, $J = 5,2$ Hz, 1H), 9,00 (d, $J = 8,3$ Hz, 1H), 8,83 (d, $J = 4,5$ Hz, 1H), 8,51 (d, $J = 8,0$ Hz, 1H), 8,44 – 8,30 (m, 7H), 8,25 (d, $J = 9,3$ Hz, 1H), 8,20 – 8,14 (m, 2H), 8,08 (t, $J = 8,3$ Hz, 1H), 8,02 (d, $J = 7,7$ Hz, 1H), 7,83 – 7,78 (m, 1H), 7,67 – 7,62 (m, 1H). ¹³C NMR (100 MHz, DMSO ppm) δ 198,22, 194,99, 191,50, 161,50, 158,19, 157,30, 156,77, 153,27, 152,55, 149,78, 140,53, 137,43, 132,36, 132,24, 131,33, 130,78, 129,61, 129,37, 129,15, 129,09, 128,67, 128,25, 128,20, 128,01, 127,78, 127,29, 126,65, 126,23, 126,00, 125,81, 125,59, 125,54, 125,50, 124,49, 124,23, 124,01. HRMS (ESI) (m/z): [M-Cl] ⁺ obliczone dla [C ₃₄ H ₁₉ N ₃ O ₃ Re] ⁺ 7040,0984. Znaleziono 704,0984.			
	Analiza elementarna obliczona dla $C_{34}H_{19}CIN_3O_3Re$ (739,19 g/mol): C, 55,24; H, 2,59;			
	N, $5,68\%$; otrzymano: C, $55,33$; H, $2,49$; N, $5,72\%$.			
	DSC: 1 skan: $T_m=322$, 349 °C; II skan: $T_g=257$ °C.			

	Ar
	Ar
	l ľ ľ
	oć 🐃
	$[\text{ReCl}(\text{CO})_3(\text{Ar-dppy-}\kappa^2\text{N})]$
	(1B-3B oraz 5B-6B)
	The ch
- ·	5B 6B
Oznaczenie	Dane eksperymentalne
	Wydajność: 78%
	IR (KBr, cm ⁻¹) 2024 (vs), 1932 (vs), 1914 (vs) v (C=O); 1609 (m), v (C=N)i v (C=C).
	¹ H NMR (400 MHz, DMSO ppm) δ 10,22 (s, 1H), 9,31 (d, $J = 1,3$ Hz, 1H), 9,21 (s, 1H), 9,17
	(d, J = 2, 3 Hz, 1H), 8,98 (d, J = 3, 1 Hz, 1H), 8,92 (s, 2H), 8,24 (d, J = 1, 3 Hz, 1H), 8,17
	(d, J = 8,2 Hz, 1H), 8,14 - 8,09 (m, 1H), 8,02 - 7,97 (m, 1H), 7,83 (d, J = 6,4 Hz, 1H),
	7,78 – 7,69 (m, 1H), 7,68 – 7,61 (m, 2H).
1B	¹³ C NMR (100 MHz, DMSO ppm) δ 196,46, 194,56, 189,52, 158,37, 155,15, 153,32, 152,08,
	150,96, 147,93, 147,06, 145,89, 145,83, 145,46, 144,07, 134,33, 133,34, 130,25, 129,78,
	128,86, 128,69, 128,16, 127,64, 126,64, 125,59, 125,27, 124,44.
	HRMS (ESI) (m/z): [M-Cl] ⁺ obliczone dla [C ₂₆ H ₁₅ N ₅ O ₃ Re] ⁺ 632,0732. Znaleziono 632,0735.
	Analiza elementarna obliczona dla C ₂₆ H ₁₅ ClN ₅ O ₃ Re · ¹ / ₂ C ₇ H ₈ (713,16 g/mol): C, 49,68;
	H, 2,69; N, 9,82%; otrzymano: C, 49,51; H, 3,02; N, 9,91%.
	DSC: I skan: $T_m=242$ °C: II skan: $T_o=175$ °C.
	Wydainość: 74%
	IR (KBr cm ⁻¹) 2023 (vs) 1920 (vs) 1898 (vs) $v(C=0)$: 1612 (m) $v(C=N)$ i $v(C=C)$
	¹ H NMR (400 MHz DMSO npm) δ 10 36 (s 1H) 9 44 (s 1H) 9 20 (s 1H) 9 15 (s 1H)
	9.00 - 8.92 (m 3H) 8.90 (s 1H) 8.57 (s 1H) 8.34 (d $I = 8.6$ Hz 1H) 8.14
	$(d I = 8.6 \text{ Hz} 1 \text{H}) \times 10 - 8.00 \text{ (m} 2 \text{H}) \times 7.68 - 7.60 \text{ (m} 2 \text{H})$
	^{13}C NMR (100 MHz DMSO nnm) δ 196 54 194 60 189 59 158 74 155 51 153 50 150 92
2B	150 68 147 90 147 06 145 86 145 84 145 33 144 11 133 93 132 90 131 42 129 02
	128 88 128 35 128 00 127 70 127 09 125 47 124 45 121 67
	HRMS (FSI) (m/z) : $[M-C1]^+$ obliczone dla $[C_{2k}H_{15}N_5O_2Re]^+$ 632 0732 Znaleziono 632 0734
	Analiza elementarna obliczona dla C_{2} (H ₁ ClN ₅ O ₃ Re \cdot ¹ / ₄ C ₇ H ₈ (690 12 g/mol): C 48 30:
	H 2 48: N 10 15% otrzymano: C 47 98: H 2 66: N 9 91%
	$DSC \cdot I \text{ skan}: T = 305 \text{ °C } z \text{ rozkładem}$
	Wydainość: 61%
	$\mathbf{IR} (KBr \text{ cm}^{-1}) 2023 (y_c) = 1012 (y_c) = 1802 (y_c) y_c (-0) \cdot 1612 (m) y_c (-N) + y_c (-0)$
	IN (IND) , $(\text{III}) = 2023$ (vs), 1712 (vs), 1072 (vs) $V(C=0)$, 1012 (III), $V(C=1) = V(C=0)$. IH NMB (A00 MHz DMSO npm) $\delta = 10.22$ (s = 14) 0.20 (s = 14) 0.22 (s = 14) 0.10
	$\begin{array}{c} \mathbf{H} & \mathbf{H} \mathbf{H} \mathbf{K} & (400 \ \ \mathbf{H} \mathbf{H} \mathbf{Z}, \ \mathbf{D} \mathbf{H} \mathbf{S} \mathbf{S} \ \mathbf{D} \mathbf{H} \mathbf{H} \mathbf{S} \mathbf{S} \ \mathbf{H} \mathbf{H} \mathbf{S} \mathbf{S} \ \mathbf{S} \$
	(a, J = 2, 7 Hz, 111), 9,05 (a, J = 0, 4 Hz, 111), 9,01 = 0,74 (m, 211), 0,92 (s, 211), 0,52 (s, 111), 0,92 (s, 211), 0,52 (s, 211)
	7.78 - 7.71 (m 2H)
5R	^{13}C NMR (100 MHz DMSO nnm) & 106 47 104 58 180 56 158 47 155 21 153 35 152 22
30	150.00 147.08 147.06 145.05 145.86 145.40 144.12 122.16 120.52 120.22 120.10
	130,77, 147,70, 147,00, 143,75, 145,00, 145,47, 144,12, 155,10, 150,52, 150,25, 150,17, 120,28, 120,20, 128,64, 128,20, 127,72, 127,56, 127,52, 125,72, 125,50, 122,72, 122,02
	HDMS (FSI) (m/z) ; [M Cl] ⁺ abliazona dla [C ₁ ,H ₂ ,N ₂ , 125,72, 125,72, 125,72, 125,02]
	Analiza alementaria abliczona dla C_{30} H ₂ ClN ₂ O ₃ Rej 062,0609. Zhaleziono 062,0691.
	EXAMPLE A CONTRACT IN A CONTRACT OF A CONT
	N, 9, 770, 002yinano. C, $30, 27, 11, 2, 15, N, 9, 7770.$
	DSU: 1 SKall: $1_m = 255^{-1}U$; 11 SKall: $1_g = 215^{-1}U$.
	wydajnośc: 55%
	IK (KBr, cm ⁻¹) 2021 (vs), 1932 (vs), 1895 (vs) $v(C=O)$; 1609 (m), $v(C=N)$ i $v(C=C)$.
6B	'H NMR (400 MHz, DMSO ppm) δ 10,17 (s, 1H), 9,37 (s, 1H), 9,23 (s, 1H), 9,16
	(d, J = 2, 7 Hz, 1H), 8,97 (d, J = 2,9 Hz, 1H), 8,91 (s, 2H), 8,48 (d, J = 8,0 Hz, 1H),
	8,40 - 8,29 (m, 8H), $8,14$ (t, $J = 7,7$ Hz, 1H).
	Widmo ¹³ C NMR nie zostało zarejestrowane ze względu na niewystarczającą rozpuszczalność

próbki.
HRMS (ESI) (m/z): [M-Cl] ⁺ obliczone dla [C ₃₂ H ₁₇ N ₅ O ₃ Re] ⁺ 706,0889. Znaleziono 706,0886.
Analiza elementarna obliczona dla C ₃₂ H ₁₇ ClN ₅ O ₃ Re · ⁷ / ₈ C ₇ H ₈ (821,78 g/mol): C, 55,72;
H, 2,94; N, 8,52%; otrzymano: C, 55,72; H, 2,82; N, 8,85%.
DSC: I skan: przejście kryształ \rightarrow kryształ =154 °C; T _m =298 °C; II skan: T _g =232 °C.

* związek **3B** nie został uzyskany w stopniu czystości pozwalającym na dalszą charakterystykę i badania właściwości, natomiast związek **4B** nie został uzyskany z powodu braku niezbędnego do syntezy liganda L^{4B} .

8. Metody analizy i badań wolnych ligandów i związków koordynacyjnych renu(I)

8.1. Analiza elementarna

Analizy elementarne wykonano na aparacie Vario EL III apparatus (Elementar. Germany).

8.2. Spektroskopia NMR

Widma NMR (¹H i ¹³C NMR) zostały wykonane przy użyciu spektrometru Bruker Avance 400. Dla widm protonowych częstotliwość rezonansowa wynosiła 400 MHz natomiast dla widm węglowych 100 MHz. Pomiary przeprowadzono w temperaturze 295 K, a jako rozpuszczalnika użyto deuterowanego chloroformu lub DMSO. Dla dokładniejszej charakterystyki związków wykorzystano techniki spektroskopii korelacynej 2D: COSY, czyli homojądrową dwuwymiarową spektroskopię korelacyjną, spektroskopię heterojądrową: HMBC (heterojądrowa korelacja dalekiego zasięgu) oraz HMQC (heterojądrowa korelacja z detekcja przejść wielokwantowych).

8.3. Spektroskopia IR

Widma drgań oscylacyjnych w zakresie podczerwieni (4000-400 cm⁻¹) zarejestrowano na spektrometrze FT-IR Nicolet iS5. Próbki przygotowano w formie pastylek z KBr.

8.4. Spektroskopia mas

Analizy spektrometrii masowej o wysokiej rozdzielczości przeprowadzono na spektrometrze masowym Waters Xevo G2 Q-TOF (Waters Corporation) wyposażonym w źródło jonizacji metodą elektrospreju (ESI) działające w trybach jonów dodatnich. Dane pełnego skanu spektrometrii mas zebrano od 100 do 1000 Da z czasem skanowania 0,1 s. Masa badanych związków była korygowana podczas pomiaru przy użyciu specjalnego wzorca zewnętrznego (roztwór leu-enkefaliny, Lock-Spray[™]), który generował jon odniesienia przy wartości m/z 556,2771 Da ([M⁺H]⁺) w dodatnim trybie ESI. Dokładną masę i skład adduktów jonów molekularnych obliczono za pomocą oprogramowania MassLynx (Waters). Pomiary

wykonywane były z napięciem kapilary 4 kV, w temperaturze 120°C w przepływie gazu 50 L/godzinę.

8.5. Rentgenowska analiza strukturalna

Pomiary dyfrakcyjne monokryształów ligandów triiminowych (L^{1A} oraz L^{IB}) oraz związku koordynacyjnego renu(I) **1A** zostały wykonane w temperaturze pokojowej przy użyciu dyfraktometru rentgenowskiego Gemini A Ultra firmy Oxford Diffraction z detektorem CCD Atlas przy wykorzystaniu promieniowania monochromatycznego linii K_a molibdenu o długości fali λ =0,71073 Å. Pomiar oraz obróbka uzyskanych danych zostały przeprowadzone z wykorzystaniem pakietu CrysAlis firmy Oxford Diffraction [96]. Intensywności refleksów zostały skorygowane o poprawki Lorentza, w tym polaryzacyjną oraz do absorpcji promieniowania przy zastosowaniu algorytmu skalowania SCALE3 ABSPACK. Struktury zostały wstępnie rozwiązane z wykorzystaniem metody SHELXS-2014, a następnie udokładnione metodą SHELXL-2014 z pełnomacierzową metodą najmniejszych kwadratów [97]. Atomy nie będące wodorami zostały udokładnione przez zastosowanie anizotropowych współczynników temperaturowych. Natomiast atomy wodoru zostały znalezione z warunków geometrycznych za pomocą modelu 'riding model' i przypisanych im przesunięciom izotropowym d(C–H) oraz temperaturowym czynnikom izotropowym U_{iso}(H), które wynoszą d(C–H) = 0,93 Å, U_{iso}(H) = 1,2 U_{eq}(C) (dla aromatycznych atomów węgla).

8.6. Analiza termiczna

Do wyznaczenia właściwości termicznych przy zastosowaniu różnicowej kalorymetrii skaningowej (DSC) użyto aparatu TA-DSC 2010. Pomiary wykonano w atmosferze azotu w szczelnie zamkniętych aluminiowych naczynkach. Pomiary prowadzono z szybkością ogrzewania 20°C/min.

Analizę termograwimetryczną (TGA) przeprowadzono wykorzystując analizator Perkin Elmer Thermogravimetric Analyzer Pyris 1 TGA. Ogrzewanie odbywało się w atmosferze azotu, a jego szybkość wynosiła 15°C/min.

8.7. Woltamperometria cykliczna (CV) i pulsowa woltamperometria różnicowa (DPV)

Pomiary elektrochemiczne ligandów oraz związków koordynacyjnych renu(I) wykonano za pomocą potencjostatu Eco Chemie Autolab PGSTAT128n oraz Autolab PGSTAT 100N. Do określenia właściwości badanych związków posłużono się metodą woltamperometrii cyklicznej (CV) oraz różnicowej pulsowej woltamperometrii (DPV). Pomiary przeprowadzono w roztworze dichlorometanu o stężeniu 1·10⁻³ mol/dm³ lub 2·10⁻³ mol/dm³. Elektrolitem stosowanym w pomiarach był heksafluorofosforan tetrabutyloamonowy Bu₄NPF₆. W pomiarach zastosowano układ trójelektrodowy złożony z elektrody pracującej (elektroda z węgla szklistego lub drucika platynowego), elektrody pomocniczej (elektroda platynowa o bardzo dużej powierzchni) oraz elektrody referencyjnej (drut srebrowy lub elektroda Ag/AgCl). W obu metodach jako wzorca wewnętrznego użyto ferrocenu, którego potencjał jonizacji Fc/Fc⁺ wynosi w próżni -5,1 eV. W związku z użyciem wzorca wewnętrznego wszystkie pomiary dotyczące potencjałów redoks zostały skorygowane o podaną powyżej wartość. Pomiary zostały wykonane w temperaturze $25 \pm 1^{\circ}$ C w atmosferze argonu. Dla metody woltamperometrii cyklicznej (CV) szybkość skanowania wynosiła 0,1 V/s oraz 0,05 V/s, natomiast dla różnicowej woltamperometrii pulsowej (DPV) szybkość ta wynosiła 0,01 V/s.

8.8. Spektroskopia absorpcyjna

Elektronowe widma absorpcyjne w roztworze acetonitrylu, chloroformu, metanolu oraz heksanu, a także w ciele stałym zostały zmierzone przy użyciu dwuwiązkowego spektrometru UV-Vis ThermoScientific Evolution 220 w zakresie 190-1000 nm. Pomiary spektroskopii absorpcyjnej w ciele stałym w postaci cienkiej warstwy na substracie szklanym oraz w postaci blendy z poli(N-winylokarbazolu) (PVK) i 2-(4-tert-butylofenylo)-5-(4-bifenylo)-1,3,4-oksadiazolu (PBD) (w stosunku wagowym 50:50%) dla związków koordynacyjnych Re(I) zostały wykonane z wykorzystaniem spektrofotometru dwuwiązkowego Jasco V-570 UV-Vis-NIR w zakresie 200-1000 nm.

8.9. Fotoluminescencja

Właściwości fotoluminescencyjne ligandów triiminowych związków oraz koordynacyjnych renu(I) badano w temperaturze pokojowej w roztworach z wykorzystaniem rozpuszczalników o różnej polarności, w temperaturze 77K w butyronitrylu oraz w ciele stałym. Roztwory były przygotowywane bezpośrednio przed wykonaniem pomiarów, a dla związków koordynacyjnych renu(I) dodatkowo argonowane przez 20 minut. Pomiary zostały wykonane przy zastosowaniu spektrofluorymetru FSL-980 wyposażonego w 450 W lampę ksenonową oraz fotopowielacz PMT+500 nm (Hamamatsu, R928P). Wydajności kwantowe luminescencji zostały wyznaczone metodą absolutną przy wykorzystaniu sfery całkującej. Roztwór odniesienia stanowił spektroskopowo czysty rozpuszczalnik, w którym był prowadzony pomiar, natomiast dla próbek w ciele stałym zastosowano Spectralon[®]. Dla pomiarów wydajności kwantowych zastosowano 2 lub 3 krotny pomiar próbki o kroku pomiarowym 0,25 nm. Pomiarów czasów życia luminescencji dokonano za pomocą metody czasowo skorelowanego zliczania pojedynczych fotonów (TCSPC) lub skalowania wielokanałowego (MSC), gdzie długość fali wzbudzenia uzyskiwana była przez zastosowanie 60 W lampy mikrosekundowej. W metodzie TCSPC źródłem wzbudzenia były diody TCSPC z modyfikowalnym okresem impulsów o długości fali 310, 340, 375, 405 oraz 470 nm. Przy pomiarach czasów życia luminescencji mierzono funkcję odpowiedzi aparatu (IRF), stosując jako wzorzec LUDOX[®]. Pomiary dla związków w postaci cienkiego filmu oraz jako blendy w mieszaninie PVK:PBD w stosunku wagowym 50:50 % na substracie szklanym wykonano stosując spektrometr Hitachi F-2500.

8.10. Absorpcja przejściowa w zakresie femtosekundowym

Badania w zakresie spektroskopii absorpcji przejściowej typu pompa-sonda przeprowadzono wykorzystując spektrometr Helios Fire (Ultrafast Systems) z laserem Ti:szafir (Astrella, Coherent), który umożliwia generację impulsów o czasie trwania <100 fs oraz energii >5 mJ z częstotliwością repetycji 1 kHz i centralną długością fali 800 nm. Impulsy wzbudzenia o długości fali 355, 405 i 420 nm zostały wygenerowane z wykorzystaniem parametrycznego wzmacniacza optycznego (Light Conversion, TOPAS prime). Kontinuum światła białego stanowiące w tym układzie wiązkę próbkującą uzyskano przez przepuszczenie przez kryształ CaF₂ części wiązki głównej. Tak uzyskane kontinuum światła białego kierowano na kuwetę o grubości 2 mm, w której znajdował się roztwór badanego związku. Uzyskany sygnał absorpcyjny rejestrowano za pomocą detektora CCD. Impulsy wiązki pompującej były dzielone przez mechaniczny modulator, który zsynchronizowany był do połowy częstości lasera. Po podzieleniu wiązki pompującej uzyskiwano dwa widma absorpcyjne: widmo bez oraz z udziałem pompy. Opóźnienie pomiędzy wiązką pompującą i próbkującą było kontrolowane przez zautomatyzowaną optyczną linię opóźniającą w zakresie rozdzielczości czasowej do 8 ns.

Pomiary zostały przeprowadzone w roztworach chloroformu, acetonitrylu oraz DMSO. Stężenie badanego związku dobierane było na podstawie widma absorpcyjnego w zakresie UV-Vis. Absorbancja w długości fali wzbudzenia była w zakresie 0,4-0,5. Przed każdym właściwym pomiarem absorpcji przejściowej dla badanego związku przeprowadzane były pomiary wpływu mocy wiązki lasera na badaną próbkę (fluence dependance), co pozwalało na wybór odpowiedniej mocy lasera do właściwego pomiaru. Dodatkowo przeprowadzano test określający stopień fotodegradacji próbki rejestrując widma absorpcyjne przed i po poddaniu próbki działaniu lasera. W trakcie pomiaru próbka była mieszana przy zastosowaniu mieszadła magnetycznego wbudowanego w spektrometr do pomiaru absorpcji przejściowej.

89

Otrzymane wyniki opracowano z zastosowaniem programów Surface Xplorer (Ultrafast Systems) oraz OptimusTM. Pierwszym krokiem było przygotowanie widma do właściwej analizy polegające na korekcji tła, odjęciu udziału światła rozproszonego oraz uwzględnieniu udziału rozpuszczalnika. Dla każdej próbki wykonywano analizę artefaktu koherencji w celu uzyskania informacji o IRF oraz korekcji świergotu wiązki próbkującej (ang. *chirp*). Uzyskane widma przedstawiono jako zależność ΔA od λ , gdzie λ oznacza długość fali, natomiast ΔA opisuje różnicę pomiędzy absorbancją próbki z udziałem wiązki pompującej i bez jej udziału. Obserwowane dodatnie fragmenty widma związane są z absorpcją stanów wzbudzonych (ang. Excited State Absorption, ESA), natomiast za ujemną część widma odpowiada depopulacja stanu podstawowego zwana wybielaniem stanu podstawowego (ang. *Ground State Bleaching*, GSB) oraz emisja wymuszona (SE). Analizę globalną przeprowadzono przy zastosowaniu programu OptimusTM.

8.11. Generowanie tlenu singletowego

Zdolność do generowania tlenu singletowego określono poprzez monitorowanie fotoutleniania 1,3-difenyloizobenzofuranu (DPBF, 50 μ M) z dodatkiem odpowiedniego związku koordynacyjnego renu(I) w DMSO (50 μ M dla **3A** oraz 25 μ M dla **4A**). Wydajność kwantową generowania tlenu singletowego (Φ_{Δ}) dla związków renu(I) oszacowano stosując jako wzorzec [Ru(bipy)₃](PF₆)₂ ($\Phi_{\Delta O2}$ - 0.66 w DMSO).

8.12. Elektroluminescencja

W celu zebrania widm elektroluminescencyjnych badanych związków napięcie przyłożono za pomocą precyzyjnego zasilacza GwInstek PSP-405. Filmy i blendy z mieszaniny PVK:PBD w stosunku wagowym 50:50% uzyskano z roztworu chloroformu odpowiednich karbonylowych związków renu(I) o stężeniu 10 mg/cm³. Przygotowanym jednorodnym roztworem pokrywano szklany substrat metodą powlekania obrotowego przy parametrach 1000 obrotów w czasie 60 s. Następnie przygotowane filmy zostały suszone przez 24 godziny w próżni w temperaturze 50°C.

Światło pochodzące z urządzenia OLED zbierano przez soczewkę 30 mm, skupionej się na szczelinie wejściowej (50 µm) monochromatora (Shamrock SR-303i) i zarejestrowano za pomocą detektora CCD (Andor iDus 12305). Czas zbierania danych wynosił zwykle 10 s. Wstępne ustawienie układu pomiarowego wykonano za pomocą lasera o długości fali 405 nm. Urządzenia OLED wytwarzane były w następujących konfiguracjach ITO:PEDOT:PSS/badany związek/Al oraz ITO:PEDOT:PSS/PVK:PBD:badany związek/Al. Zawartość badanego związku w przygotowywanej blendzie wynosiła 1, 2, lub 15 % wagowych. Pierwszym etapem wytworzenia urządzeń było pokrycie podłoża z firmy OSILLA z pikselowanymi diodami ITO przez mieszaninę PEDOT:PSS o grubości 40 nm za pomocą techniki powlekania obrotowego przy parametrach 5000 obrotów/minutę. Następnie przygotowany półprodukt wyprażano w temperaturze 120°C przez 10 minut. W kolejnym etapie naniesiona została kolejna warstwa zawierająca badany związek w roztworze chloroformu taką sama metodą jak warstwa poprzednia, przy parametrach: 1000 obrotów/minutę, z hartowaniem przez 15 minut w 100°C. Ostatnią dodawana warstwą była warstwa glinu naniesionego próżniowo. Grubość warstw

8.13. Obliczenia kwantowo-chemiczne

Obliczenia teoretyczne wykonano z wykorzystaniem pakietu programu GAUSSIAN-16 [98] we Wrocławskim Centrum Sieciowo-Superkomputerowym. Geometrię podstawowego stanu singletowego zoptymalizowano bez ograniczeń względem symetrii za pomocą metody DFT z wykorzystaniem wymienno-korelacyjnego funkcjonału PBE0 [99,100]. Dla atomów węgla, azotu, wodoru oraz chloru zastosowano bazę funkcyjną def2-TZVP, a dla atomów renu wykorzystano bazę def2-TZVPD [101,102]. Punktem wyjścia dla optymalizacji geometrii były uzyskane struktury molekularne, a wszystkie kolejne obliczenia wykonano w oparciu o zoptymalizowane geometrie. Dla cząsteczek, dla których nie otrzymano monokryształów do obliczeń wykorzystano zmodyfikowane struktury oparte o wartości rzeczywiste zanalizowanych struktur molekularnych. Aby sprawdzić, czy każda z geometrii odpowiada minimum na powierzchni energii potencjalnej, częstotliwości drgań obliczono na podstawie zoptymalizowanej geometrii. Właściwości absorpcyjne i luminescencyjne zostały wyznaczone metodą TD-DFT stosując funkcjonał PBE0 i bazy opisane powyżej. Za pomocą modelu spolaryzowanego kontinuum (PCM) odwzorowano wpływ rozpuszczalnika [103-105]. Dzięki przeprowadzonym obliczeniom wyznaczono i przeprowadzono: optymalizację geometrii, częstotliwości harmoniczne, analizę naturalnych orbitali wiązań, energię wzbudzeń wertykalnych, potencjały jonizacji, powinowactwa elektronowe, potencjały ekstrakcji dziur i elektronów oraz energię reorganizacji.

PRZEDSTAWIENIE I OMÓWIENIE WYNIKÓW

9. Arylowe pochodne 2,2':6',2"-terpirydyny (*Ar-terpy*) i 2,6-di(pirazyn-2-ylo)pirydyny (*Ar-dppy*)

9.1. Synteza i struktura molekularna

Prezentowane w pracy arylowe pochodne 2,2':6',2"-terpirydyny (*Ar-terpy*) i 2,6-di(pirazyn-2-ylo)pirydyny (*Ar-dppy*) zostały otrzymane w reakcji kondensacji Kröhnke'go przedstawionej na Schemacie 1. Reakcja ta zachodzi pomiędzy 2-acetylopirydyną lub 2-acetylopirazyną i odpowiednim arylowym aldehydem w stosunku masowym 2:1 w etanolu. Synteza przebiega w środowisku zasadowym z utworzeniem diketonowego produktu przejściowego, który pod wpływem wodnego roztworu amoniaku ulega cyklizacji z utworzeniem centralnego pierścienia pirydyny w wyniki czego otrzymujemy docelowy ligand *Ar-terpy* lub *Ar-dppy*.

Schemat 1. Synteza pochodnych 2,2':6',2"-terpirydyny (*Ar-terpy*) i 2,6-di(pirazyn-2-ylo)pirydyny (*Ar-dppy*) w reakcji kondensacji Kröhnke'go.

Podstawą do identyfikacji *Ar-terpy* i *Ar-dppy* były głównie techniki spektroskopowe takie jak: jądrowy rezonans magnetyczny (NMR), spektroskopia w podczerwieni (IR), a także analiza elementarna.

Dla pochodnych 2,2':6',2"-terpirydyny oraz 2,6-di(pirazyn-2-ylo)pirydyny wszystkie piki pochodzące od protonów rejestrowanych w widmie ¹H NMR występują w zakresie

charakterystycznym dla protonów aromatycznych i zawierają się w przedziale 7,30 ppm do 9,95 ppm. Piki te są zwykle dubletami, trypletami lub łączą się tworząc multiplety. Jedynym wyróżniającym się multipletowością pikiem jest singlet opisujący położenie dwóch protonów centralnego pierścienia pirydylowego w związkach *Ar-terpy* i *Ar-dppy*. Wartości wyrażone w ppm tego piku przedstawiono w Tabeli 34. Widma zostały zarejestrowane w CDCl₃.

R-terpy	Położenie singletu [ppm]	R-dppy	Położenie singletu [ppm]
L ^{1A}	8,64	L ^{1B}	8,64
L ^{2A}	8,88	L ^{2B}	8,87
L ^{3A}	8,61	L ^{3B}	8,63
L ^{4A}	8,97	-	-
L ^{5A}	8,70	L ^{5B}	8,70
L ^{6A}	8,78	L ^{6B}	8,78

Tabela 34. Położenie piku singletowego w ppm dla związków Ar-terpy i Ar-dppy.

Podstawnik przyłączony w pozycji 4' dla pochodnych *Ar-terpy* i 4 dla pochodnych *Ar-dppy* ma znaczący wpływ na przesunięcie chemiczne singletu pochodzącego od protonów centralnego pierścienia pirydylowego. Analiza danych z Tabeli 34 pozwala stwierdzić, że podstawniki o stosunkowo małej zawadzie przestrzennej (tworzące mniejszy kąt dwuścienny z centralnym pierścieniem pirydyny liganda), a więc 2-naftylowy (związki L^{2A} oraz L^{2B}) oraz 2-antracenowy (związek L^{4A}) charakteryzują się wyższymi wartościami przesunięcia chemicznego singletu. Podstawniki o większej zawadzie przestrzennej: 1-naftylowy (L^{1A} i L^{1B}), 9-antracenowy (L^{3A} i L^{3B}), 9-fenantrenylowy (L^{5A} i L^{5B}) oraz 1-pirenowy (L^{6A} i L^{6B}) powodują natomiast przesunięcie omawianego singletu w stronę mniejszych wartości ppm.

Zamiana rdzenia 2,2':6',2"-terpirydynowego na 2,6-di(pirazyn-2-ylo)pirydynowy nie powoduje znaczących zmian w położeniu singletu reprezentującego protony centralnego pierścienia, natomiast pozostałe sygnały charakteryzują się wyższymi wartościami przesunięcia chemicznego co związane jest z obecnością w rdzeniu *dppy* dodatkowych atomów azotu. Widma ¹H NMR dla przykładowych związków L^{1A} i L^{2A} oraz L^{1B} i L^{2B} zostały przedstawione na Rysunku 40.

Rysunek 40. Widma ¹H NMR dla związków L^{1A} i L^{2A} oraz L^{1B} i L^{2B}.

Dla związku L^{1B} dokonano pełnego przyporządkowania sygnałów na widmie ¹H NMR do protonów związku. Wykorzystano w tym celu techniki 2D NMR: COSY (dwuwymiarową spektroskopię korelacyjną), HMBC (heterojądrową korelację dalekiego zasięgu) oraz HMQC (heterojądrową korelację z detekcją przejść wielokwantowych). Rezultaty tych pomiarów, wraz z pełnym przyporządkowaniem sygnałów w widmach ¹H NMR i ¹³C NMR do wodorów i węgli w cząsteczce L^{1B}, przedstawiono na Rysunku 41.

Dla związków uzyskanych w formie monokryształów (L^{1A} i L^{1B}) struktura molekularna została potwierdzona również z wykorzystaniem rentgenowskiej analizy strukturalnej. Dane krystalograficzne oraz szczegóły rozwiązania struktur związków L^{1A} i L^{1B} prezentuje Tabela 35.

Tabela 35. Dane krystalograficzne oraz szczegóły rozwiązania struktur związków L^{1A} i L^{1B} .				
		L ^{1B}		
Wzór empiryczny	$C_{25}H_{17}N_3$	C ₂₃ H ₁₅ N ₅		
Masa molowa [g/mol]	359,42	361,40		
Temperatura [K]	293,0(2)	293,0(2)		
Długość fali [Å]	0,71073	0,71073		

Układ krystalograficzny	rombowy	trójskośny
Grupa przestrzenna	Pbca	$P \overline{1}$
Stałe sieciowe [Å, °]	a = 10,9626(13)	a = 7,4460(7)
	b = 9,7929(7)	b = 11,3269(9)
	c = 34,215(3)	c = 12,3624(10)
	$\alpha = 90$	$\alpha = 66,660(8)$
	$\beta = 90$	$\beta = 73,578(8)$
	$\gamma = 90$	$\gamma = 74,031(8)$
Objętość [Å ³]	3673,2(6)	902,39(15)
Z	8	2
Gętość obliczona [Mg/m ³]	1,300	1,330
Współczynnik absorpcji [mm ⁻¹]	0,078	0,082
F(000)	1504	376
Wymiary kryształu [mm]	0,297×0,080×0,060	0,337 x 0,122 x 0,036
Forma kryształu	igiełki	igiełki
Kolor kryształu	biały	bezbarwne
Zakres kątów dla mierzonych refleksów [°]	3,31 do 29,56	3,51 do 29,46
	$-15 \le h \le 14$	$-10 \le h \le 10$
Zakres wskaźników Millera	$-13 \le k \le 13$	$-14 \le k \le 14$
	$-54 \le l \le 31$	$-16 \le l \le 16$
Zebrane refleksy	20047	14549
Niezależne refleksy	4567 (<i>R</i> _{int} =0,037)	4446
Kompletność do $2\theta=50^{\circ}$ [%]	99,58	99,8
Maksymalna i minimalna transmisja	0,333 i 1,000	0,728 i 1,000
Dane / parametry uściślane / parametry	4567/0/253	4446/0/253
Zgodność dopasowania na F ²	1,025	1,013
K_{-1}	$R_1 = 0,0474$	$R_1 = 0,0681$
Koncowe wskazniki [1=20(1)]	$wR_2 = 0,1043$	$wR_2 = 0,1530$
Wskaźniki R	$R_1 = 0,0819$	$R_1 = 0,1773$
(dla wszystkich indeksów)	$wR_2 = 0,1226$	$wR_2 = 0,2121$
Resztkowe piki na różnicowej mapie gęstości elektronowej [eÅ- ³]	0,190 i -0,145	0,235 i -0,185
Numery CCDC	1988712	2042422

Obydwa związki, L^{1A} i L^{1B} , zawierają podstawnik 1-naftylowy, a różnią się rdzeniem triiminowym, dzięki czemu możliwym jest określenie wpływu rdzenia na strukturę molekularną i upakowanie przestrzenne cząsteczek. Na Rysunku 41 przedstawiono struktury molekularne związków L^{1A} i L^{1B} , krystalizujących odpowiednio w układzie rombowym w grupie przestrzennej *Pbca* (L^{1A}) oraz w układzie trójskośnym w grupie przestrzennej *P*1 (L^{1B}).

Rysunek 41. Struktury molekularne L^{1A} i L^{1B} wraz z numeracją atomów.

Pirydynowe atomy azotu 2,2':6',2"-terpirydyny są w układzie *trans*, *trans*, minimalizującym elektrostatyczne oddziaływania między wolnymi parami azotu i oddziaływaniami van der Waalsa z protonami [106-109], co bardziej szczegółowo dyskutowano w rozdziale 4. Długości wiązań i miary kątów w cząsteczkach L^{1A} i L^{1B} prezentują Tabele 36 i 37.

L ^{1A}		L ^{1B}	
N(1) - C(1)	1,334(2)	N(1)—C(1)	1,336(3)
N(1)—C(5)	1,3377(19)	N(1)—C(2)	1,321(4)
N(2)—C(6)	1,3424(17)	N(2)—C(3)	1,326(3)
N(2)—C(10)	1,3377(18)	N(2)—C(4)	1,329(3)
N(3)—C(11)	1,3390(19)	N(3)—C(5)	1,343(3)
N(3)—C(15)	1,335(2)	N(3)—C(9)	1,342(3)
C(1)—C(2)	1,370(2)	N(4)—C(11)	1,333(4)
C(2)—C(3)	1,368(3)	N(4)—C(12)	1,323(4)
C(3)—C(4)	1,379(2)	N(5)—C(10)	1,335(3)
C(4)—C(5)	1,381(2)	N(5)—C(13)	1,331(4)
C(5)—C(6)	1,4881(19)	C(1)—C(4)	1,381(3)
C(6)—C(7)	1,3865(19)	C(2)—C(3)	1,360(4)
C(7)—C(8)	1,3897(19)	C(4) - C(5)	1,481(3)
C(8)—C(9)	1,3848(19)	C(5)—C(6)	1,395(3)
C(8)—C(16)	1,4896(18)	C(6)—C(7)	1,391(3)
C(9)—C(10)	1,3861(19)	C(7)—C(8)	1,383(3)
C(10)—C(11)	1,4843(19)	C(7)—C(14)	1,491(3)
C(11)—C(12)	1,379(2)	C(8)—C(9)	1,392(3)
C(12)—C(13)	1,376(2)	C(9)—C(10)	1,484(3)
C(13)—C(14)	1,366(3)	C(10)—C(11)	1,381(3)
C(14)—C(15)	1,362(3)	C(12)—C(13)	1,367(5)
C(16)—C(17)	1,3698(19)	C(14)—C(15)	1,364(4)
C(16)—C(25)	1,4232(19)	C(14)—C(23)	1,416(4)
C(17)—C(18)	1,399(2)	C(15)—C(16)	1,410(4)
C(18)—C(19)	1,351(2)	C(16)—C(17)	1,365(5)
C(19)—C(20)	1,411(2)	C(17)—C(18)	1,395(5)
C(20)—C(21)	1,411(2)	C(18)—C(19)	1,406(5)
C(20)—C(25)	1,4219(18)	C(18)—C(23)	1,430(3)
C(21)—C(22)	1,351(2)	C(19)—C(20)	1,340(7)
C(22)—C(23)	1,399(2)	C(20)—C(21)	1,391(5)
C(23)—C(24)	1,360(2)	C(21)—C(22)	1,351(5)
C(24)—C(25)	1,4157(19)	C(22)—C(23)	1,423(4)

Tabela 36. Długości wiązań [Å] dla związków L^{1A} i L^{1B}.

Tabela 37. Miary kątów	ſ°	dla	związków	L ^{1A} i L ^{1B} .
------------------------	----	-----	----------	-------------------------------------

L ^{1A}		L ^{1B}	
C(1) - N(1) - C(5)	117,45(14)	C(1) - N(1) - C(2)	115,6(2)
C(6) - N(2) - C(10)	117,95(12)	C(3) - N(2) - C(4)	116,7(2)
C(11) - N(3) - C(15)	116,56(15)	C(5) - N(3) - C(9)	117,6(2
N(1) - C(1) - C(2)	123,88(17)	C(11) - N(4) - C(12)	115,6(2)
C(1) - C(2) - C(3)	118,33(16)	C(10) - N(5) - C(13)	116,2(2)
C(2) - C(3) - C(4)	119,09(16)	N(1)-C(1)-C(4)	123,1(3)
C(3) - C(4) - C(5)	119,02(16)	N(1)-C(2)-C(3)	121,8(3)
N(1) - C(5) - C(4)	122,20(14)	N(2) - C(3) - C(2)	122,8(3)
N(1) - C(5) - C(6)	116,50(12)	N(2) - C(4) - C(1)	120,0(2)
C(4) - C(5) - C(6)	121,30(13)	N(2) - C(4) - C(5)	118,0(2)
N(2) - C(6) - C(5)	116,14(12)	C(1) - C(4) - C(5)	122,0(2)
N(2) - C(6) - C(7)	122,40(13)	N(3)-C(5)-C(4)	116,9(2)
C(5) - C(6) - C(7)	121,45(12)	N(3) - C(5) - C(6)	122,4(2)

C(6) - C(7) - C(8)	119,70(13)	C(4) - C(5) - C(6)	120,8(2)
C(7) - C(8) - C(9)	117,53(13)	C(5)-C(6)-C(7)	120,1(2)
C(7)-C(8)-C(16)	121,36(12)	C(6) - C(7) - C(8)	117,2(2)
C(9)-C(8)-C(16)	121,06(12)	C(6) - C(7) - C(14)	122,1(2)
C(8)-C(9)-C(10)	119,63(13)	C(8) - C(7) - C(14)	120,6(2)
N(2)-C(10)-C(9)	122,74(13)	C(7)-C(8)-C(9)	119,7(2)
N(2)-C(10)-C(11)	115,96(12)	N(3)-C(9)-C(8)	123,1(2)
C(9)—C(10)—C(11)	121,29(13)	N(3)—C(9)—C(10)	116,5(2)
N(3)—C(11)—C(10)	116,67(13)	C(8)—C(9)—C(10)	120,4(2)
N(3)—C(11)—C(12)	122,28(14)	N(5)—C(10)—C(9)	117,0(2)
C(10)—C(11)—C(12)	121,05(14)	N(5)—C(10)—C(11)	120,6(2)
C(11)—C(12)—C(13)	119,39(16)	C(9)-C(10)-C(11)	122,4(2)
C(12)—C(13)—C(14)	118,84(16)	N(4) - C(11) - C(10)	123,0(2)
C(13)—C(14)—C(15)	118,15(17)	N(4) - C(12) - C(13)	122,1(3)
N(3)—C(15)—C(14)	124,77(18)	N(5)—C(13)—C(12)	122,6(3)
C(8)—C(16)—C(17)	118,99(13)	C(7)—C(14)—C(15)	119,6(2)
C(8)—C(16)—C(25)	121,25(12)	C(7)—C(14)—C(23)	121,1(3)
C(17)—C(16)—C(25)	119,76(12)	C(15)—C(14)—C(23)	119,4(2)
C(16)—C(17)—C(18)	121,43(14)	C(14)-C(15)-C(16)	122,0(3)
C(17)-C(18)-C(19)	120,04(14)	C(15)-C(16)-C(17)	119,2(3)
C(18)—C(19)—C(20)	120,97(14)	C(16) - C(17) - C(18)	121,1(3)
C(19)—C(20)—C(21)	121,88(13)	C(17) - C(18) - C(19)	122,2(3)
C(19)—C(20)—C(25)	119,46(13)	C(17)-C(18)-C(23)	119,5(3)
C(21)—C(20)—C(25)	118,65(13)	C(19)-C(18)-C(23)	118,4(3)
C(20)—C(21)—C(22)	121,34(14)	C(18) - C(19) - C(20)	122,2(3)
C(21)—C(22)—C(23)	120,38(15)	C(19)-C(20)-C(21)	119,7(4)
C(22)-C(23)-C(24)	120,27(14)	C(20) - C(21) - C(22)	121,4(4)
C(23)—C(24)—C(25)	121,11(13)	C(21)—C(22)—C(23)	120,6(3)
C(16)—C(25)—C(20)	118,30(12)	C(14)—C(23)—C(18)	118,8(3)
C(16)—C(25)—C(24)	123,42(12)	C(14)—C(23)—C(22)	123,5(2)
C(20)—C(25)—C(24)	118,24(13)	C(18)—C(23)—C(22)	117,7(2)

Dla obydwu cząsteczek wartości długości wiązań i kątów przyjmują porównywalne wartości. Wyraźne różnice pomiędzy cząsteczkami L^{1A} i L^{1B} dostrzega się natomiast w zakresie kątów dwuściennych pomiędzy płaszczyzną podstawnika a płaszczyzną wyznaczoną przez środkowy pierścień pirydyny (68,19° dla L^{1A} oraz 52,22° dla L^{1B}) oraz pomiędzy centralną pirydyną a bocznymi pierścieniami *terpy* i *dppy* (10,61° i 27,60° dla L^{1A} oraz 3,15° i 4,91° dla L^{1B}). Wzrost planarności rdzenia *dppy* w porównaniu z *terpy* przypisać można występowaniu wewnątrzcząsteczkowych wiązań wodorowych w związku L^{1B} , przedstawionych na Rysunku 42.

Rysunek 42. Wewnątrzcząsteczkowe wiązania wodorowe w związku L^{1B}.

Upakowanie przestrzenne cząsteczek w sieci krystalicznej obydwu związków, wraz z zaznaczonymi oddziaływaniami π - π stackingowymi, zobrazowano na Rysunku 43. W przypadku pochodnej 2,2':6',2"-terpirydyny oddziaływania π - π stackingowe występują pomiędzy pierścieniami naftylowymi sąsiadujących ze sobą cząsteczek [3,9030 Å dla centroid Cg4 (C16-C17-C18-C19-C20-C25)•••Cg5^a (C20-C21-C22-C23-C24-C25), (a):-*x*,-*y*,-*z* oraz 3,6367 Å dla centroid Cg5•••Cg5^b, (b):1-*x*,-*y*,1-*z*]. Natomiast oddziaływania π - π stackingowe cząsteczek związku L^{1B} występują pomiędzy pierścieniami rdzenia a pierścieniami podstawnika naftylowego [3,9321(18) Å dla centroid Cg1 (N1-C1-C4-N2-C3-C2)•••Cg3^c (N4-C11-C10-N5-C13-C12), (c):2-*x*,-*y*,1-*z*; 3,6933(17) Å dla centroid Cg2 (N3-C5-C6-C7-C8-C9)•••Cg3^d, (d):1-*x*,-*y*,1-*z* oraz 3,6624(17) Å dla centroid Cg4 (C14-C15-C16-C17-C18-C23)•••Cg4^e, (e):1-*x*,-*y*,2-*z*].

Rysunek 43. Upakowanie przestrzenne cząsteczek L^{1A} i L^{1B} z zaznaczonymi oddziaływaniami π - π stackingowymi.

9.2. Właściwości termiczne

Właściwości termiczne związków *Ar-terpy* i *Ar-dppy* przedstawione w Tabeli 38 obejmują trzy parametry $T_5 T_{10}$ i T_{max} , oznaczające kolejno temperatury, w których następuje ubytek 5% i 10% masy oraz temperaturę całkowitego rozkładu danego związku. Dodatkowo na Rysunku 44 dla wszystkich omawianych związków przedstawiono termogramy opisujące zależność procentowego ubytku masy związku od temperatury.

					········		
Związek	T ₅ [°C]	T ₁₀ [°C]	T _{max} [°C]	Związek	T ₅ [°C]	T ₁₀ [°C]	T _{max} [°C]
L ^{1A}	309	326	387	L ^{1B}	299	314	369
L ^{2A}	307	327	388	L ^{2B}	310	325	386
L ^{3A}	333	356	419	L ^{3B}	357	370	416
L ^{4A}	339	359	420	L ^{4B}	_	—	—
L ^{5A}	339	360	432	L ^{5B}	331	349	408
L ^{6A}	361	382	444	L ^{6B}	329	382	438

Tabela 38. Właściwości termiczne związków Ar-terpy i Ar-dppy.

Rysunek 44. Termogramy dla związków Ar-terpy i Ar-dppy.

Wszystkie związki, zarówno te oparte na rdzeniu terpy jak i te na rdzeniu dppy, wysoką stabilnością temperaturową. Pochodne charakteryzują się 2,6-di(pirazyn-2ylo)pirydynowe wykazują z reguły nieznacznie niższe temperatury T₅, T₁₀ i T_{max} w porównaniu z ich analogami terpirydynowymi. Bardziej wyraźny spadek wartości T_{max} przy zmianie rdzenia z terpy na dppy obserwuje się jedynie w dwóch przypadkach: związkach z podstawnikiem 1-naftylowym (L^{1B}) i 9-fenentrenowym (L^{5B}) - odpowiednio o 18 i 24°C. Wartości temperatury rozkładu T_{max} dla związków L^{1A}-L^{6A} zawierają się w przedziale 387–444°C, a dla pochodnych dppy w przedziale 369–438°C. W przypadku tego parametru obserwujemy zależność od formy izomerycznej podstawnika. Przykładowo, L^{5A} wykazuje wyższą temperaturę T_{max} o około 12°C w porównaniu do związków L^{1A} i L^{2A}. Również zmiana podstawnika 1-naftylowego na 2-naftylowy w związkach o rdzeniu dppy skutkuje wzrostem T_{max} o 17°C.

T₅ zawiera się w przedziałach 307–361°C dla L^{1A}-L^{6A} oraz 299–357°C dla L^{1B}-L^{6B}, natomiast T₁₀ przyjmuje wartości z zakresu 326–382°C dla związków opartych na rdzeniu *terpy* i 314–382°C dla pochodnych *dppy*. Podobnie jak i dla T_{max}, wraz ze wzrostem ilości pierścieni aromatycznych budujących podstawnik wzrasta stabilność termiczna odpowiednich ligandów triiminowych, natomiast różnice w wartościach parametrów termicznych w grupie związków zawierających izomeryczne podstawniki są nieznaczne.

9.3. Badania elektrochemiczne

Najważniejsze wyniki badań elektrochemicznych, w tym wartości potencjału odpowiadającego początkowi narastania pierwszego piku utlenienia oraz pierwszego piku redukcji, oraz obliczone na ich podstawie wartości potencjału jonizacji (IP), który może być z pewnym przybliżeniem uznawany za energię orbitalu HOMO, powinowactwa elektronowego (EA) odpowiadającego w przybliżeniu energii orbitalu LUMO, a także wielkość przerwy energetycznej pomiędzy orbitalami HOMO i LUMO dla arylowych pochodnych 2,2':6',2"-terpirydyny oraz 2,6-di(pirazyn-2-ylo)pirydyny zostały przedstawione w Tabeli 39. Krzywe procesów utleniania i redukcji dla dwóch przykładowych związków L^{6A} i L^{6B} przedstawione zostały na Rysunku 45.

Tabela 39. Wartości potencjału odpowiadającego początkowi narastania pierwszego piku utlenienia oraz pierwszego piku redukcji, potencjału jonizacji (IP), powinowactwa elektronowego (EA) oraz przerwy aparentusznej (E) warzóznych w elektronowejtech dla *Ar tarmuji Ar domu*

energetycznej (Lg) wyłażonych w cierce na wolach dla Ar-terpy i Ar-terpy.						
Związek	E_{red}^{onset} [V]	E_{utl}^{onset} [V]	IP [eV]	EA [eV]	Eg [eV]	$Eg_{(OPT)} [eV]$
L ^{1A}	-2,32	1,19	6,29	2,78	3,51	3,69
L ^{2A}	-2,20	—	6,50*	2,90	—	3,60
L ^{3A}	-2,21	0,83; 0,98	5,93	2,89	3,04	3,11
L ^{4A}	-2,05	0,86	5,96	3,05	2,91	2,99
L ^{5A}	-2,25	1,26	6,36	2,85	3,51	3,68
L ^{6A}	-2,24	0,79; 1,04; 1,18	5,89	2,86	3,03	3,24
L ^{1B}	-2,11	—	6,58*	2,99	—	3,59
L ^{2B}	-2,16	—	6,52*	2,94	—	3,58
L ^{3B}	-2,29	0,73; 1,07	5,83	2,81	3,02	3,07
L ^{5B}	-2,13	1,20	6,30	2,97	3,33	3,60
L ^{6B}	-2,13; -2,28	0,84; 1,11	5,94	2,97	2,97	3,25
$EA = e^{-} (5.1+E_{rad}^{onset}); IP = e^{-} (5.1+E_{vil}^{onset}); Eg = E_{Uil}^{1} - E_{Red}^{1}; Eg_{(OPT)} = 1240/\lambda_{onset};$						

Rysunek 45. Widma CV dla procesów utleniania i redukcji związków L^{6A} oraz L^{6B}.

Za wyjątkiem związku L^{6B} , w przypadku którego zarejestrowano dwa procesy redukcji (z wartościami E_{red}^{onset} równymi -2,13 i -2,28 V), związki *Ar-terpy* i *Ar-dppy* charakteryzują się

pojedynczą nieodwracalną redukcją zachodzącą na rdzeniu liganda [110,111]. Potencjał odpowiadający początkowi narastania pierwszego piku redukcji dla pochodnych *terpy* zawiera się w zakresie od -2,05 V do -2,32 V, a dla związków opartych na rdzeniu *dppy* w zakresie od -2,11 V do -2,29 V. Jak wynika z danych zawartych w Tabeli 39 zmiana rdzenia *terpy* na *dppy* powoduje wzrost wartości potencjału redukcji w przypadku związków z podstawnikami naftylowymi, fenantrenowym i pirenowym, natomiast dla podstawnika 9-antracenowego wartość potencjału redukcji zmniejszyła się. Porównując natomiast dane dla związków L^{1A} i L^{2A} oraz L^{3A} i L^{4A} obserwujemy wzrost potencjału redukcji dla związków z podstawnikami o mniejszej zawadzie przestrzennej, co oznacza, że związki te łatwiej zredukować. Odwrotnie zależność ta wygląda w parze L^{1B} i L^{2B} gdzie łatwiejszej redukcji ulega związek o większej zawadzie przestrzennej.

W zależności od rodzaju podstawnika w związkach Ar-terpy i Ar-dppy obserwuje się różną ilość procesów utleniania. W przypadku L^{1A}, L^{4A}, L^{5A} oraz L^{5B} jest to pojedynczy proces, dla L^{3A}, L^{3B} oraz L^{6B} obserwuje się dwa procesy utleniania, natomiast dla L^{6A} - aż trzy. Utlenianie związków L^{2A}, L^{1B} oraz L^{2B} najprawdopodobniej zachodzi poza oknem elektrochemicznym. Proces utleniania omawianych związków zachodzi w obrębie liganda arylowego [112]. Zmiana rdzenia z terpy na dppy powoduje nieznaczne zmiany w wartościach potencjału odpowiadającego początkowi narastania pierwszego piku utlenienia. Spowodowała jednak zanik mierzalnego w dostępnym oknie elektrochemicznym procesu utlenienia dla związku L^{1B} w przeciwieństwie do terpirydynowego analogu. Wartości powinowactwa elektronowego dla związków Ar-dppy są wyższe niż dla Ar-terpy.

Analiza wpływu podstawnika na parametry elektrochemiczne w obydwu seriach ligandów pozwoliła wyodrębnić dwie grupy: pierwszą z podstawnikami naftylowymi oraz fenantrenowym i drugą z podstawnikami antracenowymi i pirenowym. Pierwsza z tych grup charakteryzuje się w porównaniu z drugą wyższymi wartościami parametru IP oraz Eg. Na wartości EA natomiast rodzaj wprowadzonego podstawnika nie ma tak znaczącego wpływu.

9.4. Właściwości absorpcyjne

Właściwości absorpcyjne związków *Ar-terpy* i *Ar-dppy* badane były w czterech rozpuszczalnikach o różnej polarności: heksanie, chloroformie, acetonitrylu oraz metanolu. Maksima absorpcji i molowy współczynnik absorpcji zostały przedstawione w Tabeli 40, a zarejestrowane widma pokazane zostały na Rysunku 46.

Związek	Rozpuszczalnik	λ [nm] (ϵ [dm ³ ·mol ⁻¹ ·cm ⁻¹])		
	CHCl ₃	319 (11773), 290 (28316), 254 (20328)		
L ^{1A}	MeCN	318 (10874), 285 (29279), 251 (20247), 236 (30723), 221 (68940)		
	MeOH	317 (10458), 287 (25842), 251 (17257), 222 (67456)		
	Heksan	318 (9222), 287 (25682), 253 (17442)		
	CHCl ₃	311 (15438), 295 (28812), 285 (33025), 270 (37347), 257 (39439)		
т 2А	MeCN	312 (14001), 293 (29242), 280 (35692), 265 (40323), 255 (44492), 225 (49074)		
L	MeOH	306 (18533), 294 (29522), 282 (35201), 267 (38287), 254 (40358), 226 (47377)		
	Heksan	317 (8813), 294 (24977), 279 (31043), 264 (36797), 255 (40832)		
	CHCl ₃	388 (6044), 368 (6432), 350 (4260), 282 (12624), 258 (69106)		
т ЗА	MeCN	386 (11746), 367 (11647), 348 (7545), 279 (24179), 254 (153897)		
L	MeOH	385 (5986), 365 (5538), 347 (4305), 279 (11475), 254 (75117)		
	Heksan	384 (8795), 364 (9476), 347 (5931), 278 (16831), 254 (123300)		
	CHCl ₃	392 (6156), 368 (8338), 351 (7989), 294 (76560), 260 (86741), 249 (65344)		
т 4А	MeCN	388 (6191), 369 (8648), 350 (9293), 288 (88536), 257 (95496), 244 (72229)		
L	MeOH	390 (6690), 368 (10354), 349 (10525), 289 (98209), 257 (108656), 243 (85013)		
	Heksan	388 (5354), 368 (8930), 349 (78425), 291 (91508), 257 (107922), 244 (70816)		
	CHCl ₃	313 (14852), 302 (21459), 281 (29396), 256 (50311)		
L ^{5A}	MeCN	313 (14479), 296 (21723), 276 (27181), 252 (48547)		
	MeOH	312 (17341), 297 (26751), 278 (34360), 253 (59249)		
	Heksan	314 (13962), 296 (25129), 276 (32927), 253 (55137)		
	CHCl ₃	350 (20942), 315 (13276), 282 (35431)		
I 6A	MeCN	346 (23690), 314 (13784), 279 (34707), 253 (25788), 239 (53122)		
L	MeOH	348 (26014), 312 (16803), 280 (44677), 241 (62259)		
	Heksan	343 (27763), 313 (16179), 280 (43678), 254 (32263), 241 (60561)		
	CHCl ₃	293 (34373), 249 (25573)		
T 1B	MeCN	288 (37538), 248 (23318), 221 (78429)		
	MeOH	289 (35348), 247 (23706)		
	Heksan	288 (33265), 249 (20384)		
	CHCl ₃	292 (32450), 274 (27032), 251 (36758)		
I 2B	MeCN	286 (36233), 269 (29697), 248 (39254), 224 (42175)		
	MeOH	289 (37120), 268 (29206), 248 (339396)		
	Heksan	287 (35535), 268 (28793), 248 (36926)		
	CHCl ₃	388 (6947), 369 (7689), 351 (5432), 288 (17523), 257 (74065)		
T 3B	MeCN	389 (10036), 366 (10209), 350 (7926), 286 (24602), 254 (123013)		
	MeOH	384 (10070), 364 (10697), 346 (7906), 286 (26947), 253 (134848)		
	Heksan	384 (12759), 366 (13247), 349 (9813), 284 (30382), 254 (150710)		
L ^{5B}	CHCl ₃	298 (28806), 287 (31577), 255 (54220)		
	MeCN	296 (31526), 284 (34684), 251 (58762), 227 (38664), 210 (35475)		
	MeOH	296 (32246), 285 (34828), 251 (61874)		
	Heksan	295 (31832), 282 (34604), 251 (59099)		
	CHCl ₃	351 (19986), 334 (15674), 283 (36735), 246 (51173)		
L ^{6B}	MeCN	344 (26534), 327 (19854), 278 (44311), 241 (62542)		
	MeOH	347 (24109), 330 (20483), 279 (42929), 241 (67214)		
	Heksan	345 (23707), 330 (20483), 278 (41061), 241 (59571)		

Tabela 40. Położenie maksium pasm absorpcji λ oraz molowy współczynnik absorpcji ε dla *Ar-terpy* i *Ar-dppy*.

Rysunek 46. Zestawienia widm absorpcji związków Ar-terpy i Ar-dppy w rozpuszczalnikach o różnej polarności.

Wszystkie związki wykazują pasma absorpcyjne w zakresie UV. Wprowadzenie podstawników antracenowych i pirenowego prowadzi do wyraźnego przesunięcia najniżej energetycznego pasma w kierunku dłuższych fal. W przypadku związków z podstawnikiem pirenowym pasmo to charakteryzuje się również dużym wzrostem molowego współczynnika absorpcji. Porównując związki oparte na rdzeniu *dppy* z tymi opartymi na *terpy* obserwujemy batochromowe przesunięcie najniżej energetycznego pasma w związkach L^{1B}, L^{2B} i L^{5B}, natomiast dla L^{3B} oraz L^{6B} zmiana rdzenia nie spowodowała żadnych przesunięć (Rysunek 47).

Rysunek 47. Porównanie widm UV-Vis dla związków opartych na rdzeniu terpy i dppy w CHCl₃.

Położenie pasm związków *Ar-terpy* i *Ar-dppy* jest praktycznie niezmienne w zależności od polarności zastosowanego rozpuszczalnika, wskazując na znikomy udział przejść o charakterze charge-transfer (Rysunek 48).

Rysunek 48. Widma absorpcji dla L^{1A} (a) oraz L^{6B} (b)w rozpuszczalnikach o różnej polarności.

Analizy pasm absorpcji związków *Ar-terpy* dokonano poprzez porównanie z widmami bloków budulcowych: 2,2':6',2"-terpirydyny i odpowiednich aromatycznych węglowodorów (Rysunek 49).

Rysunek 49. Widma absorpcyjne związków Ar-terpy w heksanie w porównaniu z widmami bloków budulcowych.

Najniżej energetyczne pasmo związków L^{3A}, L^{4A} oraz L^{6A} przypisać można przejściom zachodzącym w obrębie podstawnika aromatycznego. W porównaniu do antracenu pasma L^{3A} oraz L^{4A} w zakresie 325–400 nm są nieznacznie przesunięte w kierunku dłuższych długości fali. Podobnie jak w przypadku antracenu pasma te wykazują wyraźną strukturę wibronową. Zmiana podstawnika 9-antracenowego (L^{3A}) na 2-antracenowy (L^{4A}) skutkuje nieznacznym batochromowym przesunięciem, co jest konsekwencją zmniejszenia kąta skręcenia pomiędzy podstawnikiem a rdzeniem, a tym samym wzrostem sprzężenia pomiędzy nimi. Również w związku L^{6A} podstawnik 1-pirenowy ma znaczący wpływ na najniżej energetyczne pasmo. W tym przypadku jednak pasmo to jest wyraźnie batochromowo przesunięte w porównaniu do pasma pirenu. W przeciwieństwie do pasma chromoforu aromatycznego nie wykazuje subtelnej struktury wibronowej. Może to wskazywać na silną π -delokalizację w obrębie całego liganda. W związkach L^{1A}, L^{2A} oraz L^{5A} najniżej energetyczne pasmo odpowiada natomiast 2,2':6',2"-terpirydyny przejściom elektronowym zachodzącym zarówno rdzeniu W jak i podstawniku aromatycznym.

9.5. Właściwości fotoluminescencyjne

Właściwości fotoluminescencyjne związków *Ar-terpy* i *Ar-dppy* badano w roztworach o różnej polarności oraz w ciele stałym i temperaturze 77 K, a wyniki tych badań zebrano w Tabeli 41 i na Rysunku 50, 55 i 56. Zbadano także właściwości fotoluminescencyjne bloków budulcowych związków *Ar-terpy* w roztworach chloroformu, acetonitrylu, metanolu oraz heksanu i porównano je z wynikami dla związków L^{1A}-L^{6A}.

Maksima emisji *Ar-terpy* i *Ar-dppy* w roztworze w zależności od polarności rozpuszczalnika i zastosowanego podstawnika arylowego mieściły się w zakresie 346–484 nm dla związków o rdzeniu *terpy* i 372–566 nm dla pochodnych *Ar-dppy*. Również wydajność kwantowa zmieniała się w szerokim zakresie od 6,9 do 88% dla L^{1A} – L^{6A} oraz 0,1–62% dla L^{1B} – L^{6B} osiągając najwyższe wartości dla układów z podstawnikiem pirenowym (Tabela 41). Czasy życia stanów wzbudzonych są typowe dla fluorescencji, i wynoszą 0,8–11,6 ns dla *Ar-terpy* i 0,3–5,3 ns dla *Ar-dppy*.

Rysunek 50. Zestawienia widm emisji związków *Ar-terpy* i *Ar-dppy* w heksanie, chloroformie, acetonitrylu i metanolu.

Zwiazek		Wzbudzenie [nm]	Emisja [nm]	Czas życia [ns]	φ[%]	
	Heksan	297	382	1,7	41	
L ^{1A}	CHCl ₃	297	370	1,3	56	
	MeCN	297	350	0,8	19	
	MeOH	297	399	0,8	19	
	Ciało stałe	385	577	0,9	5,7	
	Heksan	298	373	5,8	52	
	CHCl ₃	299	357, 373	5,1	56	
L ^{2A}	MeCN	296	346, 364, 383, 406	5,7	26	
	MeOH	297	391	4,4	32	
	Ciało stała	350	390;	1,8	11	
	Cialo state	550	570	4,2	11	
	Heksan	365	421	4,5	55	
T 3A	CHCl ₃	387	420	4,5	62	
	MeCN	364	400; 421	3,6	53	
	MeOH	365	433	1,1	11	
	Ciało stałe	445	486; 515	0,8	0,6	
	Heksan	369	444	5,9	41	
т 4А	CHCl ₃	351	420; 439	4,7	47	
L	MeCN	368	401; 426; 452; 484	5,1	47	
	MeOH	369	462	6,3	64	
	Ciało stałe	485	543; 587sh	4,8	10	
T 5A	Heksan	299	356; 373	11,6	11	
	CHCl ₃	302	357; 373	9,9	19	
	MeCN	300	354; 371	8,3	6,9	

Tabela 41. Charakterystyka właściwości luminescencyjnych Ar-terpy i Ar-dppy.

	MeOH	296	394	2,6	9,0
	Ciało stałe	360	568	1,6	10
L ^{6A}	Heksan	347	424	3,2	85
	CHCl ₃	355	415	2,8	88
	MeCN	347	388; 406	6,4	31
	MeOH	349	446	1,8	41
	Ciało stałe	494	547	3,5	22
L ^{1B}	Heksan	303	379sh; 393	0,3	2,1
	CHCl ₃	305	397	0,6	0,5
	MeCN	307	423	1,1	0,7
	MeOH	307	405	1,8	0,2
	Ciało stałe	370	413	0,7	0,6
	Heksan	291	372; 390	0,6	4,0
L ^{2B}	CHCl ₃	290	392sh;427	4,1	5,7
	MeCN	285	409	1,7	7,7
	MeOH	285	395	2,9	7,9
	Ciało stałe	370	528;	0,7	1.4
			569	1,7	1,4
	Heksan	346	406, 424	3,8	40
	CHCl ₃	388	432	4,5	15
	MeCN	364	434,	4,7	1.0
L ^{3B}	Meen	504	521	4,7	1,9
	МаОН	347	433,	0,8	0.1
	meon		566	1,3	0,1
	Ciało stałe	375	484sh, 523, 560,	2.6	0.1
	Cluio Stule	515	601	2,0	0,1
	Heksan	293	396	0,8	1,4
	CHCl ₃	295	413	0,7	3,4
L ^{5B}	MeCN	298	448	0,9	8,1
	MeOH	295	399sh,486	5,3	6,2
	Ciało stałe	373	424	0,9	0,8
	Heksan	353	393; 410	3,8	62
	CHCl ₃	355	427	3,2	43
L 6B	MeCN	349	464	5,0	20
	MeOH	343	408; 466; 492	3,6	2,5
	Ciało stałe 375	375	431; 460;	2,0	3.1
		Clato state 3/3	486; 519; 558	2,6	5,1

Dane fotoluminescencyjne związków Ar-terpy i Ar-dppy poddano analizie uwzględniając kilka czynników:

1. wpływ podstawnika na położenie i kształt pasma emisji

- wprowadzenie podstawników antracenowych oraz pirenowego prowadzi do znacznego batochromowego przesunięcia maksimum emisji zarówno w przypadku *Ar-terpy* jak i *Ar-dppy* względem pozostałych podstawników, ale przesunięcia te są bardziej widoczne dla pochodnych 2,2':6',2"-terpirydyny;
- zmiana podstawnika 9-antracenowego na 2-antracenowy o mniejszej zawadzie przestrzennej powoduje batochromowe przesunięcie pasma emisji *Ar-terpy* we wszystkich rozpuszczalnikach;

- podstawnik 9-fenantrylowy, będący izomerem do podstawników antracenowych powoduje w stosunku do nich przesunięcie hipsochromowe związków *Ar-terpy* we wszystkich rozpuszczalnikach oraz *Ar-dppy* w roztworze chloroformu i heksanu. W acetonitrylu natomiast pierwsze pasmo związku L^{3B} pokrywa się z pasmem dla L^{5B}, a w metanolu nie obserwuje się żadnego wyraźnego przesunięcia;
- wpływ sterycznej zawady podstawnka na położenie pasm emisji Ar-terpy z podstawnikami naftylowymi jest zależny od rozpuszczalnika - przy zmianie podstawnika z 1-naftylowego na 2-naftylowy następuje hipsochromowe przesunięcie w metanolu, podczas gdy w heksanie, acetonitrylu i chloroformie praktycznie nie obserwuje się zmian w położeniu maksimum pasma emisji;
- dla związków *Ar-dppy* przy zmianie podstawnika z 1-naftylowego na 2-naftylowy wykazującego mniejszą zawadę zmiany w położeniu pasma emisji również zależą od rozpuszczalnika, i tak następuje batochromowe przesunięcie w chloroformie, hipsochromowe w metanolu i acetonitrylu, natomiast w heksanie położenie pasma jest praktycznie niezmienne;
- dla związków Ar-terpy we wszystkich rozpuszczalnikach zauważa się, że emisja ligandów z podstawnikiami naftylowymi i fenentrenowym jest przesunięta hipsochromowo w stosunku do Ar-terpy z podstawnikami antracenowymi i pirenowym. Dla związków Ar-dppy taki podział podstawników względem położenia pasma emisji nie jest obserwowany;
- z reguły związki z podstawnikami antracenowymi i pirenowym, zarówno Ar-terpy jak i Ar-dppy, charakteryzują się najwyższymi wydajnościami kwantowymi. Dla związków Ar-terpy podstawnik fenantrenowy we wszystkich rozpuszczalnikach powodował obniżenie wydajności kwantowej względem wszystkich pozostałych podstawników;
- rodzaj podstawnika zarówno w związkach z rdzeniem *terpy* jak i *dppy* nie wpływa w znaczący sposób na długość czasów życia luminescencji.

2. wpływ rdzenia liganda terpy i dppy na położenie i kształt pasma emisji

- związki *Ar-dppy* wykazują emisję batochromowo przesuniętą w porównaniu z emisją analogicznych pochodnych terpirydynowych (Rysunek 51);
- wpływ rdzenia na kształt pasma emisji jest różny w zależności od rozpuszczalnika
 w porównaniu z odpowiednimi analogami terpirydynowymi następuje wyraźne poszerzenie pasma dla związków L^{1B} i L^{2B} w acetonitrylu i metanolu, L^{5B} w metanolu, L^{6A} w acetonitrylu, jak również następuje utrata subtelnej struktury pasma emisji L^{2B}

w roztworach chloroformu oraz heksanu, a dla L^{6A} w metanolu obserwuje się dwa pasma emisji (Rysunek 51);

• zmiana rdzenia na *dppy* skutkuje bardzo znacznymi spadkami wydajności kwantowych, natomiast nie ma ona wyraźnego wpływu na czasy życia luminescencji.

Rysunek 51. Widma emisji dla związków Ar-terpy i Ar-dppy.

3. wpływ rozpuszczalnika na położenie i kształt pasma emisji

- wraz ze wzrostem polarności rozpuszczalnika następuje wyraźne batochromowe przesunięcie pasma emisji dla związków: L^{1A}, L^{2A}, L^{4A}, L^{6A} oraz L^{5B} i L^{6B} (Rysunek 52(a));
- dla związków L^{3A} i L^{5A} batochromowe przesunięcie następuje tylko w polarnym metanolu (Rysunek 52(b));
- położenie maksimum emisji związków L^{1B} i L^{2B} jest praktycznie niezależne od polarności rozpuszczalnika, ze wzrostem polarności rozpuszczalnika następuje jedynie poszerzenie pasma (Rysunek 52(c));
- w heksanie za wyjątkiem związku L^{1A} wszystkie Ar-terpy i Ar-dppy charakteryzują się pasmem emisji z subtelną strukturą wibronową (Rysunek 50);

- w metanolu związki L^{5B} i L^{6B} wykazują dwa pasma emisji, co może wskazywać na obecność dwóch stanów ¹IL i ¹ICT (Rysunek 50);
- polarność rozpuszczalnika nie wpływa w zauważalnym stopniu na czasy życia, natomiast wydajności kwantowe zwykle przyjmują wyższe wartości w rozpuszczalnikach o mniejszej polarności.

Rysunek 52. Widma emisji w czterech rozpuszczalnikach dla L^{6A}(a), L^{3A}(b) i L^{1B}(c).

fotoluminescencyjnych Porównanie właściwości Ar-terpy w niepolarnym (heksanie) z właściwościami emisyjnymi budulcowych rozpuszczalniku bloków policyklicznych związków aromatycznych i 2,2':6',2"-terpirydyny - pozwala zauważyć, że za emisję pochodnych Ar-terpy z podstawnikami antracenowymi, fenatrenowym i pirenowym w głównej mierze odpowiada wielopierścieniowy węglowodór aromatyczny. Pasma emisji związków L^{3A}, L^{4A}, L^{5A} i L^{6A} pojawiają się w tym samym zakresie co pasma fluorescencji odpowiednich węglowodorów aromatycznych. Natomiast pasma emisji związków L^{1A} i L^{2A} są przesunięte batochromowo w stosunku do pasm emisji obydwu bloków budulcowych (Rysunek 53).

Rysunek 53. Widma emisyjne związków *Ar-terpy* w porównaniu z widmami bloków budulcowych w roztworze heksanu.

Ze względu na silna zależność właściwości emisyjnych związków L^{4A}, L^{6A} oraz L^{6B} od polarności rozpuszczalnika można przypuszczać, że emisja w środowisku polarnym następuje z wewnątrzcząsteczkowym przeniesieniem ładunku, 0 charakterze ICT ze stanu (z ang. Intramolecular charge transfer) powstałym w rezultacie fotowzbudzenia. Stany charakterze charge-transfer są lepiej stabilizowane w polarnych rozpuszczalnikach, 0 co prowadzi do obniżenia energii i batochromowego przesunięcia emisji przy wzroście Zjawisko fotoindukowanego polarności rozpuszczalnika. wewnątrzcząsteczkowego przeniesienia elektronu jest typowe dla chromoforów typu donor-akceptor.

W celu potwierdzenia charakteru ICT stanu emisyjnego związków L^{4A}, L^{6A} oraz L^{6B} wyznaczono z zależności Lippert'a-Matagi:

$$\Delta E_{exc-em} = \frac{2(\mu_e - \mu_g)^2}{hca^3} \Delta f + Const.$$

różnicę między momentami dipolowymi stanu wzbudzonego i podstawowego ($\Delta \mu = \mu_e - \mu_g$) [113,114]. Promień wnęki Onsager'a (*a*) obliczony został metodami teoretycznymi, *h* oznacza stałą Planck'a, *c* - prędkość światła w próżni, a ΔE_{exc-em} jest przesunięciem Stokesa w danym rozpuszczalniku. Polaryzacja orientacyjna rozpuszczalnika Δf obliczona została ze wzoru $\Delta f = \frac{\varepsilon - 1}{2\varepsilon_0 + 1} - \frac{n^2 - 1}{2n^2 + 1}$, gdzie ε_0 oznacza stałą dielektryczną rozpuszczalnika w próżni, a *n* - współczynnik załamania światła dla rozpuszczalnika. Dla wyznaczonej krzywej obrazującej zależność ΔE_{exc-em} od Δf określono współczynnik nachylenia prostej (Rysunek 54 (b)), a następnie zgodnie z podanym równaniem Lippert'a-Matagi oszacowano wartości $\Delta \mu$, uzyskując następujące wyniki: 13,40 D dla L^{4A}, 11,80 D dla L^{6A} i 15,09 D dla L^{6B}. Wartości te wraz z obserwacją dla tych związków podwójnej emisji w niektórych rozpuszczalnych jednoznacznie potwierdzają obecność stanu emisyjnego o charakterze ICT ($\pi_R \rightarrow \pi^*_{terpy}$). Największy udział stanu o charakterze ICT potwierdzono w przypadku związku L^{6B}.

Rysunek 54. Widma emisji dla związku L^{4A} w rozpuszczalnikach o różnej polarności (a), wraz z krzywą obrazującą zależność ΔE_{exc-em} od Δf (b).

Widma emisji związków *Ar-terpy* i *Ar-dppy* w ciele stałym są z reguły przesunięte batochromowo w stosunku do roztworów i występują w przedziale 390–587 nm dla związków *Ar-terpy* i 413–569 nm dla *Ar-dppy* (Rysunek 55). Wydajności kwantowe są dużo niższe w porównaniu z tymi dla roztworów, od 0,6% do 22% dla *Ar-terpy* oraz od 0,6% do 3,1% dla *Ar-dppy*. Czasy zaniku luminescencji są typowe dla fluorescencji, rzędu kilka ns. Zauważa się też skrócenie czasów życia *Ar-dppy* w porównaniu z ich analogami *Ar-terpy*.

Rysunek 55. Widma emisji dla Ar-terpy i Ar-dppy w ciele stałym.

Właściwości emisyjne związków *Ar-terpy* i *Ar-dppy* badano także w temperaturze 77 K (Rysunek 56 (a)). Badania przeprowadzono z dodatkiem jodku etylu, który sprzyja wzmocnieniu fosforescencji poprzez wygaszenie fluorescencji i międzysystemowe przejście do stanu, z którego następuje fosforescencja [115]. Zakres pasm fluorescencji zawiera się w przedziale 350–465 nm dla *Ar-terpy* i 388–472 nm dla *Ar-dppy*, natomiast fosforescencji 531–739 nm dla *Ar-terpy* i 496–746 nm dla *Ar-dppy*. Pasma fosforescencji są ustrukturyzowane dla wszystkich związków, natomiast pasma fluorescencji nie wykazują strukturyzacji dla związków z podstawnikami naftylowymi. Fluorescencja w niskiej temperaturze jest w niewielkim stopniu przesunięta hipsochromowo w stosunku do fluorescencji wykazywanej przez omawiane związki w temperaturze pokojowej.

Dla związków z podstawnikami antracenowymi i pirenowym w celu dokładnego przypisania stanu emisyjnego porównano widmo fosforescencji związków z widmami dla antracenu i pirenu. Jak można zaobserwować na Rysunku 56 (b i c) fosforescencja związków L^{3A}, L^{4A}, L^{6A} oraz L^{3B} i L^{6B} pokrywa się z widmami antacenu i pirenu co pozwala na przyporządkowanie stanu emisyjnego, z którego zachodzi fosforescencja do stanu trypletowego zlokalizowanego na podstawniku arylowym.

Rysunek 56. Widma emisji dla *Ar-terpy* i *Ar-dppy* w temperaturze 77 K (a) oraz w zestawieniu z antracenem (b) i pirenem (c). Pomiary wykonane zostały w roztworach butyronitrylu z dodatkiem jodku etylu.

9.6. Obliczenia teoretyczne

W celu pełniejszego zrozumienia właściwości fotofizycznych ligandów przeprowadzono dla nich również obliczenia teoretyczne metodą DFT i TD-DFT.

Obliczenia teoretyczne potwierdziły, że wszystkie związki *Ar-terpy* i *Ar-dppy* charakteryzują się nieplanarną geometrią. W efekcie zawady sterycznej pomiędzy atomami wodorów w pierścieniach podstawnika i centralnej pirydyny, podstawnik aromatyczny jest wyraźnie skręcony względem niemal płaskiego rdzenia *terpy* i *dppy*, a wartość kąta dwuściennego pomiędzy płaszczyzną podstawnika a płaszczyzną pierścienia centralnej pirydyny praktycznie nie zależy od rodzaju rdzenia triiminowego, a jest uwarunkowana głównie rodzajem podstawnika aromatycznego. Dobra zgodność obliczonych długości wiązań i miar kątów związków L^{1A} i L^{1B} z danymi eksperymentalnymi wyznaczonymi za pomocą rentgenowskiej analizy strukturalnej (Rysunek 57) potwierdza, że do obliczeń zastosowano prawidłowy funkcjonał, a bazy zostały dobrze dobrane.

Rysunek 57. Nałożenie struktury krystalicznej (niebieski) z wyznaczoną teoretycznie (szary) dla L^{1A} i L^{1B}.

Biorąc pod uwagę wyznaczony dla zoptymalizowanych geometrii związków Ar-terpy i Ar-dppy kąt dwuścienny pomiędzy płaszczyzną podstawnika a płaszczyzną pierścienia centralnej pirydyny można wyróżnić wśród badanych układów trzy grupy: o kącie bliskim 33° (z podstawnikiem 2-naftylowym i 2-antracenowym), o kącie bliskim 55° (1-naftylowy, 9-fenentrenowy, 1-pirenowy) oraz *Ar-terpy* i *Ar-dppy* z podstawnikiem 9-antracenowym o kącie dwuściennym około 77° (Tabela 42). W stanie wzbudzonym kąty dwuścienne pomiędzy płaszczyzną podstawnika a płaszczyzną pierścienia centralnej pirydyny dla wszystkich omawianych związków ulegają zmniejszeniu, co skutkuje wzrostem możliwości delokalizacji elektronów π w obrębie całej cząsteczki. W stanie wzbudzonym cząsteczki L^{2A} oraz L^{2B} są niemal planarne (Tabela 42).

Związek	S ₀	S ₁	Związek	S ₀	S ₁
L ^{1A}	55,07	34,66	L ^{1B}	54,77	33,08
L ^{2A}	33,48	0,05	L ^{2B}	33,41	0,20
L ^{3A}	77,30	51,75	L ^{3B}	77,37	50,62
L ^{4A}	33,17	14,73	—	—	_
L ^{5A}	56,57	34,88	L ^{5B}	56,40	40,71
L ^{6A}	53,96	37,27	L^{6B}	55,13	36,47

 Tabela 42. Wyznaczony teoretycznie kąt skręcenia [°] pomiędzy płaszczyzną podstawnika a płaszczyzną pierścienia centralnej pirydyny.

Porównanie energii poziomów HOMO i LUMO dla związków *Ar-terpy* i *Ar-dppy* wraz z wyliczoną przerwą energetyczną HOMO–LUMO prezentuje Rysunek 58 oraz Tabela 43. W przeciwieństwie do związków *Ar-terpy*, pochodne *Ar-dppy* charakteryzują się niemalże taką samą energię orbitalu LUMO (-2,18 do -2,15 eV), niezależną od wprowadzonego podstawnika. Dla wszystkich związków w rezultacie zastąpienia rdzenia *terpy* na *dppy* następuje obniżenie energii orbitalu HOMO i LUMO oraz wartości przerwy energetycznej. Zmiany te jednak silnie zależą od rodzaju podstawnika. W porównaniu do analogów terpirydynowych wyraźne zmniejszenie przerwy energetycznej HOMO–LUMO obserwuje się dla L^{1B}, L^{2B} i L^{5B}, w granicach 0,19-0,30 eV. Jest ono spowodowane w głównej mierze silną stabilizacją poziomu LUMO. W związkach z podstawnikiem pirenowym i 9-antracenowym spadek wartości przerwy energetycznej pomiędzy *Ar-terpy* a *Ar-dppy* jest zdecydowanie niższy i wynosi 0,09 eV dla L^{3B} i 0,05 eV dla L^{6B}.

Tabela 43. Porównanie energii poziomów HOMO i LUMO oraz przerwy energetycznej dla ligandów.

	HOMO [eV]		LUMO [eV]		przerwa energetyczna[eV]	
rdzeń podstawnik	terpy	dppy	terpy	dppy	terpy	dppy
1-naftylowy	-6,43	-6,47	-1,82	-2,16	4,61	4,31
2-naftylowy	-6,48	-6,51	-1,92	-2,15	4,55	4,36
9-antracenowy	-5,88	-5,91	-2,06	-2,18	3,81	3,72
3-antracenowy	-5,89	—	-2,21	—	3,69	—
9-fenantrylowy	-6,39	-6,43	-1,82	-2,16	4,57	4,27
1-pirenowy	-5,96	-6,01	-2,06	-2,16	3,90	3,85

Rysunek 58. Porównanie energii poziomów HOMO i LUMO dla związków opartych na rdzeniu *terpy* (zielony) i *dppy* (czarny).

Kontury orbitali molekularnych HOMO i LUMO badanych związków prezentuje Rysunek 59, a wyznaczone składy procentowe uwzględniające udziały procentowe podstawnika, centralnego pierścienia pirydyny oraz bocznych pierścieni rdzenia w orbitalach molekularnych przedstawiono na Rysunku 60.

Rysunek 59. Kontury orbitali molekularnych HOMO i LUMO dla związków Ar-terpy i Ar-dppy.

Rysunek 60. Składy procentowe orbitali molekularnych (granatowy-podstawnik, zielony-środkowy pierścień rdzenia, pomarańczowy-boczne pierścienie rdzenia).

W obydwu grupach związków *Ar-terpy* i *Ar-dppy* orbital HOMO zlokalizowany jest na podstawniku oraz centralnej pirydynie rdzenia, a udział podstawnika jest dominujący (od 72,5 do 92,5 %). W orbitale LUMO pochodnych wszystkich *Ar-dppy* oraz L^{1A} , L^{2A} i L^{5A} wkład wnoszą zarówno orbitale podstawnika jak i rdzenia, w mniej więcej równych częściach (Rysunek 59 i 60). Z kolei, orbitale LUMO związków L^{3A} , L^{4A} oraz L^{6A} cechują się dominującym udziałem orbitali podstawnika.

Wyniki obliczeń TD-DFT dla związków *Ar-terpy* i *Ar-dppy* dobrze odzwierciadlają zarejestrowane widma absorpcyjne (Rysunek 61 i Tabela 44).

Rysunek 61. Eksperymentalne widma absorpcji w porównaniu z widmami obliczonymi dla związków *Ar-terpy* oraz *Ar-dppy* w acetonitrylu.

	Absorpcja	Obliczenia TD-DFT w MeCN					
Związek	λ [nm] 10 ⁴ ε [M ⁻¹ cm ⁻¹]	Udział przejść (%)	Charakter przejścia	E[eV]	λ [nm]	Sila oscylatora	
L ^{1A}	318 (1,09)	H→L (92%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	3,91	317,3	0,2384	
		H→L (93%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	3,89	318,3	0,1868	
L ^{2A}	312 (1,40)	H→L+1 (51%) H-1→L (41%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$ $\pi_{terpy} \rightarrow \pi^*_{Ar-terpy}$	3,99	310,8	0,0684	
L ^{3A}	386 (1,17)	H→L (98%)	$\pi_{Ar} \rightarrow \pi^*_{Ar}$	3,19	389,06	0,1647	
L ^{4A}	388 (0,62)	H→L (98%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	3,09	401,4	0,0889	
		H→L (71%) H→L+1 (20%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$ $\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	3,88	319,36	0,2888	
L ^{5A}	313 (1,44)	H→L+1 (60%) H→L (23%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$ $\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	3,91	317,35	0,0164	
		H→L+3 (36%) H-1→L (33%)	$\pi_{Ar} \rightarrow \pi^*_{Ar}$ $\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	4,02	308,68	0,0108	
		H→L (95%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	3,38	366,6	0,5713	
L ^{6A}	346 (2,37)	H→L+3 (43%) H-2→L (33%)	$\pi_{Ar} \rightarrow \pi^*_{Ar}$ $\pi_{Ar} \rightarrow \pi^*_{Ar-terpy}$	3,77	329,2	0,0209	
		H→L (91%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$	3,65	339,8	0,0127	
		H-2→L (54%) H→L+1 (15%)	$\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{Ar} \rightarrow \pi^*_{dppy}$	3,75	330,9	0,0302	
L^{1B}	319 (3,75) sh	H→L+1 (49%) H-4→L (18%)	$\pi_{Ar} \rightarrow \pi^*_{dppy}$ $\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$	3,78	328,3	0,0938	
		$H \rightarrow L+1 (33\%)$ $H-4 \rightarrow L (31\%)$ $H-2 \rightarrow L+1 (15\%)$	$\pi_{Ar} \rightarrow \pi^*_{dppy}$ $\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{dppy} \rightarrow \pi^*_{dppy}$	3,81	325,2	0,0668	
т 2В	324 (1,08) sh	H-3→L (37%) H→L (33%)	$\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$	3,76	329,5	0,007	
		$H \rightarrow L+1 (52\%)$ H-4 $\rightarrow L (18\%)$	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$	3,78	328,2	0,1074	

 Tabela 44. Obliczone przejścia elektronowe (TD-DFT) przypisane najniżej energetycznemu pasmu związków

 Ar-terpy i Ar-dppy.

		H→L+1 (39%) H-4→L (25%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$	3,81	325,3	0,0749
I 3B	389 (1.00)	H→L (99%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$	3,09	401,2	0,0036
L	389 (1,00)	H→L+1 (98%)	$\pi_{Ar} \rightarrow \pi^*_{Ar}$	3,17	391,2	0,1555
		H→L (92%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$	3,62	343,0	0,0125
	316 (1,67) sh	H→L+1 (48%) H-3→L (32%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$	3,74	331,5	0,1197
L ^{5B}		H-3→L (35%) H→L+1 (34%)	$\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$	3,76	329,4	0,0866
		H-4→L (43%) H-3→L+1 (22%)	$\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$ $\pi_{dppy} \rightarrow \pi^*_{Ar-dppy}$	3,80	325,8	0,0321
T 6B	344 (2,65)	H→L (98%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$	3,28	378,4	0,0167
		H→L+1 (91%)	$\pi_{Ar} \rightarrow \pi^*_{Ar-dppy}$	3,38	366,8	0,1975

Obliczone wzbudzenia wertykalne $S_0 \rightarrow S_1$ związków z podstawnikami 9-antracenowym, 2-antracenowym oraz 1-pirenowym są wyraźnie przesunięte batochromowo względem $S_0 \rightarrow S_1$ dla pochodnych z grupami naftylowymi i fenantrenową, co dobrze koreluje z wynikami badań eksperymentalnych. Obliczenia teoretyczne potwierdzają także batochromowe przesunięcie absorpcji *Ar-dppy* w porównaniu z *Ar-terpy*. Wzbudzenia wertykalne $S_0 \rightarrow S_1$ dla *Ar-dppy* pojawiają w zakresie większych długości fal w porównaniu z ich analogami na bazie *terpy*. Za wyjątkiem związków L^{3A} i L^{3B} , wzbudzenie $S_0 \rightarrow S_1$ dla pochodnych *Ar-terpy* i *Ar-dppy* odpowiada przejściom o charakterze $\pi_{Ar} \rightarrow \pi^*_{Ar-terpy/dppy}$. W przypadku związków L^{3A} i L^{3B} wzbudzenie $S_0 \rightarrow S_1$ odpowiada przejściu elektronowemu w obrębie podstawnika $\pi_{Ar} \rightarrow \pi^*_{Ar}$. Duża wartość siły oscylatora dla wzbudzenia $S_0 \rightarrow S_1$ dla związku L^{6A} w porównaniu z wartościami dla pozostałych związków dobrze koreluje z wysoką wartością molowego współczynnika absorpcji pasma i potwierdza delokalizację elektronów π pomiędzy podstawnikiem i rdzeniem.

Obliczenia przeprowadzono także dla pierwszego stanu wzbudzonego S₁. Wyznaczone teoretycznie wartości energii dobrze korelują z doświadczalnymi danymi dla fluorescencji (Tabela 45).

	Ar-te	erpy	Ar-dppy		
Związek	Obliczone	Eksperymentalne	Obliczone	Eksperymentalne	
ZWIĄZCK	$\lambda [nm]/E [eV]$	λ [nm]/E [eV]	λ [nm]/E [eV]	λ [nm]/E [eV]	
L ^{1A} /L ^{1B}	400,95 nm / 3,09 eV	382 nm / 3,24 eV	400,18 nm / 3,10 eV	423 nm / 2,93 eV	
L ^{2A} /L ^{2B}	379,80 nm / 3,26 eV	373 nm / 3,32 eV	385,97 nm / 3,21 eV	409 nm / 3,03 eV	
L ^{3A} /L ^{3B}	488,76 nm / 2,54 eV	421 nm / 2,94 eV	493,16 nm / 2,51 eV	521 nm / 2,38 eV	
L ^{4A} /L ^{4B}	484,66 nm / 2,56 eV	444 nm / 2,79 eV	—	—	
т 5А/т 5В	402.81 nm / 3.08 eV	356 nm / 3,48 eV	402.03 nm / 3.08 eV	448 nm / 2,77 eV	
	402,81 nm / 3,08 eV	373 nm / 3,32 eV	402,05 1111 / 5,08 e v		
т 6А/т 6В	202.16 nm / 2.16 oV	357 nm / 3,47 eV	444.10 mm / 2.70 eV	464 mm / 2.67 eV	
	392,10 mil / 3,10 eV	373 nm / 3 32 eV	444,10 1111 / 2,/9 eV	404 mm / 2,0 / eV	

Tabela 45. Porównanie danych eksperymentalnych i teoretycznych dotyczących fluorescencji Ar-terpy i Ar-dppy.

Obliczenia przeprowadzono metodą TD-DFT z wykorzystaniem funkcjonału korelacyjno-wymiennego PBE0 i bazy funkcyjnej def2-TZVP. Obliczenie wykonano dla roztworu acetonitrylu opisanego modelem PCM.

Orbitale HOMO stanu S₁ zlokalizowane są na podstawniku i centralnym pierścieniu rdzenia *terpy* lub *dppy*, a orbitale LUMO na podstawniku oraz rdzeniu lub dla związków L^{3A}, L^{3B}, L^{4A} i L^{6A} na podstawniku i środkowym pierścieniu rdzenia. Potwierdza to znaczącą rolę jaką podstawnik arylowy odgrywa w procesie emisji (Rysunek 62).

Rysunek 62. Kontury orbitali molekularnych HOMO i LUMO dla związków Ar-terpy i Ar-dppy w stanie S1.

Dla związków L^{4A} i L^{6A}, dla których eksperymentalnie potwierdzono dużą zależność położenia pasma emisji od polarności rozpuszczalnika optymalizację geometrii stanu podstawowego i wzbudzonego, a następnie obliczenia TD-DFT przeprowadzono

z zastosowaniem modelu PMC dla sześciu różnych rozpuszczalników: chloroformu, acetonitrylu, heksanu, DMSO, metanolu oraz THF. Uzyskane teoretycznie wartości emisji i absorpcji wykorzystano do wyznaczenia wartości ($\Delta \mu = \mu_e - \mu_g$). Wykresy Lipperta-Matagi wyznaczone teoretycznie dla obu związków przedstawiono na Rysunku 63.

Rysunek 63. Wyznaczone z wykorzystaniem obliczeń teoretycznych wykresy Lipperta-Matagi dla L^{4A} i L^{6A}.

W porównaniu z danymi eksperymentalnymi wartości $\Delta \mu$ są zdecydowanie niższe, 7,1 D dla L^{4A} (doświadczalnie 13,4 D) i 10,7 D dla L^{6A} (doświadczalnie 11,8 D), ale również potwierdzają udział stanu o charakterze charge-transfer w emisji związków zawierających rozbudowane podstawniki aromatyczne bogate w elektrony.

10. Związki koordynacyjne renu(I) z arylowymi pochodnymi 2,2':6',2"-terpirydyny i 2,6-di(pirazyn-2-ylo)pirydyny

10.1. Synteza i struktura molekularna

Związki koordynacyjne o wzorze [ReCl(CO)₃(L- κ^2N)] omawiane w niniejszej pracy zostały otrzymane w wyniku reakcji pomiędzy [Re(CO)5Cl] i odpowiednim ligandem (L^{1A}-L^{6A} oraz L^{1B}, L^{2B}, L^{5B} i L^{6B}), zmieszanymi w stosunku molowym 1:1. W trakcie reakcji następuje podstawienie dwóch grup karbonylowych prekursora przez odpowiedni ligand oparty na rdzeniu 2,2':6',2"-terpirydyny (L^{1A} - L^{6A}) lub 2,6-di(pirazyn-2-ylo)pirydyny (L^{1B} , L^{2B} , L^{5B} i L^{6B}). Przebieg reakcji przedstawiono na Schemacie 2. Jak omówiono w części doświadczalnej zastosowano dwie metody otrzymywania tych związków. W pierwszej, mieszanina [Re(CO)5Cl] i liganda w toluenie była ogrzewana pod chłodnicą zwrotną przez 8 godzin. Druga metoda polegała na przeprowadzeniu reakcji podstawienia w autoklawie, również w roztworze toluenowym. W obydwu metodach wydajności produktu [ReCl(CO)₃(L- κ^2 N)] były porównywalne, jednakże druga z metod dawała wieksze prawdopodobieństwo uzyskania koordynacyjnych renu(I) W formie związków monokrystalicznej. W rezultacie przeprowadzonych syntez otrzymane zostały związki Re(I) ze wszystkimi arylowymi pochodnymi 2,2':6',2"-terpirydyny (L^{1A}-L^{6A}) oraz z czterema ligandami na bazie 2,6-di(pirazyn-2-ylo)pirydyny (L^{1B}, L^{2B}, L^{5B} i L^{6B}). Związku 3B nie udało się zsyntezować w stopniu czystości pozwalającej na dalszą jego charakterystykę, natomiast związek 4B nie został uzyskany z powodu nieotrzymania liganda L^{4B}.

Schemat 2. Schemat syntezy związków koordynacyjnych renu(I).

Pomimo przeprowadzenia wielu prób syntezy i krystalizacji jedynie związek **1A** został otrzymany w formie monokrystalicznej. Pozwoliło to na wyznaczenie struktury molekularnej tego związku przy zastosowaniu rentgenowskiej analizy strukturalnej. Dane krystalograficzne wraz ze szczegółami dotyczącymi pomiaru dla związku **1A** zostały przedstawione w Tabeli 46, a Rysunek 64 prezentuje strukturę molekularną związku.

Rysunek 64. Struktura molekularna związku 1A wraz z numeracją atomów.

	1A
Wzór empiryczny	$C_{28}H_{17}ClN_3O_3Re$
Masa molowa [g/mol]	665,09
Temperatura [K]	293,0(2)
Długość fali [Å]	0,71073
Układ krystalograficzny	trójskośny
Grupa przestrzenna	P 1
Stałe sieciowe [Å, °]	a = 7,6725(3)
	b = 13,7812(5)
	c = 16,2426(6)
	$\alpha = 66,844(4)$
	$\beta = 80,493(3)$
	$\gamma = 74,284(3)$
Objętość [Å ³]	1516,70(11)
Z	2
Gętość obliczona [Mg/m ³]	1,456
Współczynnik absorpcji [mm ⁻¹]	4,123
F(000)	644
Wymiary kryształu [mm]	0,35 x 0,16 x 0,14
Kolor kryształu	żółty
Zakres kątów dla mierzonych refleksów [°]	3,3 do 29,5
Zakres wskaźników Millera	$-10 \le h \le 9$
	$-18 \le k \le 16$
	$-21 \le 1 \le 20$
Zebrane refleksy	16162
Niezależne refleksy	$7285 (R_{int} = 0.034)$
Kompletność do $2\theta=50^{\circ}$ [%]	99,81
Maksymalna i minimalna transmisja	1,000 i 0,30836
Dane / parametry uściślane / parametry	7285 / 0 / 325
Zgodność dopasowania na F ²	1,048
Końcowe wskaźniki [I>2σ(I)]	$R_1 = 0,0283$
	$wR_2 = 0,0683$
Wskaźniki R	$R_1 = 0,0334$
(dla wszystkich indeksów)	$wR_2 = 0,0702$
Resztkowe piki na różnicowej mapie	0,820 i -0,693
gęstości elektronowej [eÅ-3]	
Numery CCDC	2094604

Tabela 46. Dane krystalograficzne wraz ze szczegółami dotyczącymi pomiaru dla związku 1A.

Otoczenie centrum metalicznego posiada geometrię odkształconego oktaedru. Ligand L^{1A} wiąże się z atomem centralnym poprzez dwa atomy azotu, w sposób dwukleszczowy. Grupy karbonylowe są położone względem siebie w pozycjach charakterystycznych dla izomerii *facjalnej*. Odkształcenie od idealnego oktaedru jest w szczególności widoczne w wielkości miar kątów C(2)–Re(1)–N(2) oraz N(1)–Re(1)–N(2) oraz długościach wiązań ren–azot (Tabela 46). W rezultacie dwukleszczowej koordynacji, a co za tym idzie utworzenia pięcioczłonowego pierścienia składającego się z dwóch atomów węgla, dwóch atomów azotu oraz atomu renu(I), kąt N(1)–Re(1)–N(2) ulega wyraźnemu pomniejszeniu w porównaniu do 90° dla idealnego oktaedru, i jest równy 74,38(10)°. Z kolei, kąt C(2)–Re(1)–N(2) wynosi 100,80(17)°, a jego zwiększenie jest spowodowane oddziaływaniem nieskoordynowanego pierścienia pirydynowego z grupą karbonylową C(2)–O(2). Obserwuje się także wydłużenie wiązania pomiędzy jonem metalu a atomem azotu centralnej pirydyny (2,218 Å) w porównaniu z długością wiązania pomiędzy jonem Re(I) a atomem azotu bocznego pierścienia pirydylowego (2,164 Å). Długości

wiązań oraz miary kątów opisujące centrum koordynacyjne w związku **1A** zostały zebrane w Tabeli 47. Kąty dwuścienne pomiędzy pierścieniem centralnej pirydyny a podstawnikiem arylowym i nieskoordynowanym pierścieniem pirydylowym wynoszą odpowiednio 38,53° i 48,14°.

Długo	ości wiązań	Miary kątów		
Re(1)-C(1)	1,948(4)	C(2)-Re(1)-C(1)	90,57(17)	
Re(1) - C(2)	1,921(4)	C(3)-Re(1)-C(1)	90,69(14)	
Re(1) - C(3)	1,913(4)	C(3)-Re(1)-C(2)	87,81(17)	
Re(1) - N(1)	2,164(3)	C(1)-Re(1)-N(1)	92,57(14)	
Re(1) - N(2)	2,218(3)	C(2)-Re(1)-N(1)	174,53(14)	
Re(1)-Cl(1)	2,4847(9)	C(3)-Re(1)-N(1)	96,62(14)	
C(1)–O(1)	1,076(5)	C(1)-Re(1)-N(2)	97,00(11)	
C(2)–O(2)	1,148(5)	C(2)-Re(1)-N(2)	100,79(14)	
C(3)–O(3)	1,145(4)	C(3)-Re(1)-N(2)	168,35(12)	
		N(1)-Re(1)-N(2)	74,38(10)	
		C(1)-Re(1)-Cl(1)	177,27(10)	
		C(2)-Re(1)-Cl(1)	91,46(13)	
		C(3)-Re(1)-Cl(1)	91,22(10)	
		N(1)-Re(1)-Cl(1)	85,27(7)	
		N(2)-Re(1)-Cl(1)	80,82(7)	

Tabela 47. Długości wiązań [Å] oraz miary kątów [°] dla związku 1A.

Upakowanie cząsteczek związku **1A** w sieci krystalicznej z zaznaczonymi oddziaływaniami $\pi \cdots \pi$ [3,870(2) Å dla Cg2 (N1-C4-C5-C6-C7-C8) \cdots Cg5^f (C19-C20-C21-C22-C23-C28), (f): 2-*x*,1-*y*,1-*z*; i 3,839(2) Å dla Cg2 \cdots Cg5^g, (g): 3-*x*, 1-*y*, 1-*z*] oraz C–O $\cdots \pi$ [3,340(5) Å dla C(2)–O(2) \cdots Cg4^h (N3-C14-C15-C16-C17-C18), (h): *x*, *y*, *z*] przedstawiono na Rysunku 65.

Rysunek 65. Upakowanie cząsteczek związku **1A** w sieci krystalicznej wzdłuż osi c* (a) oraz upakowanie z zaznaczeniem oddziaływań występujących między cząsteczkami oraz w pojedynczej cząsteczce (b).

Struktury molekularne wszystkich otrzymanych związków koordynacyjnych renu(I) potwierdzono przy zastosowaniu analizy elementarnej oraz metod spektroskopowych w tym: magnetycznego rezonansu jądrowego (NMR) i spektroskopii oscylacyjnej w zakresie podczerwieni, a także przy użyciu spektroskopii mas.

Techniki NMR i IR pozwoliły potwierdzić dwukleszczowy sposób koordynacji liganda do centrum metalicznego i obecność trzech grup karbonylowych w sferze koordynacji w geometrii *fac* względem siebie. W efekcie dwukleszczowej koordynacji pochodnych 2,2':6',2"-terpirydyny lub 2,6-di(pirazyn-2-ylo)pirydyny następuje utrata równocenności magnetycznej przez atomy wodoru pierścieni bocznych rdzenia *terpy* lub *dppy*. Przejawia się to zwiększeniem ilości sygnałów w widmach ¹H NMR związków koordynacyjnych renu(I) w porównaniu z wolnym ligandem (Rysunek 66), a w widmach ¹³C NMR pojawiają się trzy piki (przy największych przesunięciach chemicznych wyrażonych w ppm) odpowiadające atomom węgli grup karbonylowych (Rysunek 68(b), 69(b) i 70(b)).

Rysunek 66. Porównanie widma ¹H NMR wolnego liganda L^{3A} z widmem związku koordynacyjnego 3A.

Z kolei, układ pasm w widmach IR w zakresie 2024–1876 cm⁻¹ potwierdza rozmieszczenie grup karbonylowych w geometrii *facjalnej*. Pasmo o najwyższej liczbie falowej odpowiadające drganiom symetrycznym A'(1) trzech grup CO jest wyraźnie oddzielone od dwu pozostałych, częściowo pokrywających się i reprezentujących drgania asymetryczne A" i A'(2) grup karbonylowych (rozdział 3). Obecność liganda triiminowego w sferze koordynacji w widmach IR potwierdzają natomiast pasma odpowiadające drganiom grup C=C oraz C=N występujące w zakresie 1609–1613 cm⁻¹.

Dla trzech związków (**1A–3A**) dokonano pełnego przyporządkowania sygnałów w widmach NMR do protonów i atomów węgli wykorzystując metody korelacyjne 2D NMR: ¹H–¹H COSY, ¹H–¹³C HMQC, ¹H–¹³C HMBC. Widma ¹H NMR, ¹³C NMR oraz 2D NMR dla tych związków przedstawiono na Rysunkach 68-70, a wzory strukturalne związków **1A–3A** wraz z numeracją atomów wykorzystaną do interpretacji ich widm ¹H NMR oraz ¹³C NMR zamieszczono na Rysunku 67.

Rysunek 67. Wzory strukturalne związków **1A** (a), **2A** (b) i **3A** (c), wraz z numeracją atomów wykorzystaną do interpretacji ich widm ¹H NMR oraz ¹³C NMR.

Rysunek 68. Widma NMR dla związku **1A**: ¹H NMR (a), ¹³C NMR (b), ¹H–¹H COSY (c), ¹H–¹³C HMQC (d), ¹H–¹³C HMBC (e).

Rysunek 69. Widma NMR dla związku 2A: ¹H NMR (a), ¹³C NMR (b), ¹H–¹H COSY (c), ¹H–¹³C HMQC (d), ¹H–¹³C HMBC (e).

Rysunek 70. Widma NMR dla związku **3A**: ¹H NMR (a), ¹³C NMR (b), ¹H–¹H COSY (c), ¹H–¹³C HMQC (d), ¹H–¹³C HMBC (e).

Analiza danych NMR związków **1A–3A** w odniesieniu do [ReCl(CO)₃(terpy- κ^2 N)] pozwala zauważyć, że wprowadzenie podstawników 1-naftylowego, 2-naftylowego i 9-antracenowego powoduje przesunięcie pików protonów w pozycji 3' oraz 5' w stronę większych wartości ppm w porównaniu ze związkiem niepodstawionym (Tabela 48).

oraz [ReCl(CO) ₃ (terpy-κ ² N)]. Pomiary wykonano w DMSO-d ₆ .								
	1A	2A	3A	[ReCl(CO) ₃ (terpy-κ ² N)] [45]				
3′	8,00	8,34	8,07 - 7,97	7,90				
5′	9,04	9,25	8,90 - 8,84	8,86-8,80				

 Tabela 48. Przesunięcia chemiczne protonów wyrażonych w ppm dla związków 1A-3A oraz [ReCl(CO)₃(terpy-κ²N)]. Pomiary wykonano w DMSO-d₆.

Podstawnik 2-naftylowy powoduje większe przesunięcia (o 0,34 ppm dla pozycji 3' oraz 0,19 dla pozycji 5') niż 1-naftylowy, natomiast dla związku **3A** z podstawnikiem 9-antracenowym obserwuje się najmniejsze przesunięcia ze wszystkich omawianych związków w odniesieniu do [ReCl(CO)₃(terpy- κ^2 N)].

Porównanie widm ¹H NMR związków **6A** i **6B** prezentuje Rysunek 71. W efekcie wprowadzenia dodatkowych atomów azotów do rdzenia *dppy* następuje wyraźne przesunięcie sygnałów protonów pierścieni bocznych związku **6B** w porównaniu do **6A**.

Rysunek 71. Porównanie widma 1H NMR związków o różnym rdzeniu: 6A i 6B.

Położenie pasm reprezentujących drania grup karbonylowych dla związków [ReCl(CO)₃(Ar-terpy- κ^2 N)] i [ReCl(CO)₃(Ar-dppy- κ^2 N)] zebrano w Tabeli 49. Zmiana rdzenia z *terpy* na *dppy* skutkuje wzrostem średniej częstości drgań grup karbonylowych, co jest efektem wzrostu właściwości π-akceptorowych *dppy* w porównaniu z *terpy*. Nie zauważa się wyraźnego wpływu ilości pierścieni aromatycznych w podstawniku na wartość średniej częstości drgań oscylacyjnych grup CO. Porównując natomiast związki zawierające podstawniki 1-naftylowy i 2-naftylowy (**1A** vs **2A** oraz **1B** vs **2B**) można dostrzec, że połączenia z podstawnikiem o mniejszej zawadzie sterycznej (**2A** i **2B**) charakteryzują się niższymi wartościami średniej częstości drgań. Ten sam trend występuje pomiędzy związkami **3A** i **4A**.

	$[\text{ReCl}(\text{CO})_3(\text{Ar-terpy-}\kappa^2\text{N})] \text{ oraz } [\text{ReCl}(\text{CO})_3(\text{Ar-dppy-}\kappa^2\text{N})].$								
Związek	v(C≡O) A'(1)	v(C≡O) A'(2)	ν(C≡O) A "	Średnia częstości drgań					
1A	2020	1915	1892	1942					
2A	2019	1914	1876	1936					
3A	2023	1926	1896	1948					
4A	2021	1915	1893	1943					
5A	2021	1911	1876	1936					
6A	2020	1913	1880	1938					
1B	2024	1932	1914	1957					
2B	2023	1920	1898	1947					
5B	2023	1912	1892	1942					
6B	2021	1932	1895	1949					
[ReCl(CO) ₃ (terpy- κ^2 N)]	2023	1922	1866	1937					

Tabela 49. Położenie pasm reprezentujących drania grup karbonylowych dla związków [ReCl(CO)₃(Ar-terpy-κ²N)] oraz [ReCl(CO)₃(Ar-dppy-κ²N)].

10.2. Właściwości termiczne

Dane dotyczące właściwości termicznych związków koordynacyjnych renu(I) zebrane zostały w Tabeli 50.

Związek	I skan	II skan	Związek	I skan	II skan
1A	T _c 272 T _m 266, 291 Przejście fazowe 147, 169	T _g 175 T _c 280 T _m 301	1B	T _m 242	T _g 175
2A	T _m 288, 298 Przejście fazowe 208	T _g 196	2B	T _m 305 z rozkładem	_
3A	T _m 177	Tg 206	—	—	—
4A	T _m 217	Tg 198	-	—	—
5A	T _m 297	T _g 238	5B	T _m 255	Tg 215
6A	T _m 322, 349	T _g 257	6B	T _m 298 Przejście fazowe 154	T _g 232

Tabela 50. Temperatury topnienia (T _m), krystalizacji (T _c) i zeszklenia (T _g) wyrażonych w °C dla związków r	enu(I)	
---	--------	--

Wszystkie otrzymane związki charakteryzują się wysokimi temperaturami topnienia (T_m). Temperatury topnienia dla związków opartych na rdzeniu *terpy* zawierają się w zakresie od 177 do 349°C, a dla związków z rdzeniem *dppy* od 242 do 305°C. Za wyjątkiem związku **2B**, który ulega topnieniu z rozkładem, w rezultacie zmiany rdzenia z *terpy* na *dppy* dla związków z tym samym podstawnikiem arylowym następuje obniżenie temperatury topnienia. Biorąc pod uwagę rodzaj podstawnika arylowego najniższymi wartościami T_m charakteryzują się związki Re(I) z podstawnikami antracenowymi, natomiast najwyższymi - z podstawnikami

pirenowymi. Przy zmianie podstawnika 9-antracenowego na 2-antracenowy w związkach opartych na rdzeniu *terpy* następuje znaczny wzrost temperatury topnienia, aż o 40°C.

Za wyjątkiem związku **2B** wszystkie pozostałe wykazują zdolność do przechodzenia w stan szklisty. Dla związków **1A–6A** temperatura zeszklenia (T_g) przyjmuje wartości 175–257°C, a dla **1B–6B** 175–232°C. Związki oparte na rdzeniu *terpy* wykazują wyższą temperaturę zeszklenia (**5A** i **6A**) lub taką samą (**1A**) w porównaniu z ich odpowiednikami opartymi na rdzeniu *dppy*. Można zauważyć także, że wraz z ilością skondensowanych pierścieni podstawnika wzrasta T_g dla obydwu serii związków. Badane związki koordynacyjne są zatem stabilnymi materiałami amorficznymi. Dla związków **1A**, **2A** oraz **6B** termogramy DSC potwierdzają również występowanie przejść fazowych (Rysunek 72).

Rysunek 72. Termogram dla związku 2A zmierzony metodą DSC.

10.3. Charakterystyka elektrochemiczna

W Tabeli 51 przedstawiono dane dotyczące potencjałów pików utlenienia i redukcji, potencjału jonizacji (IP), powinowactwa elektronowego (EA) oraz wielkości przerwy energetycznej między orbitalami granicznymi. Jako wzorca wewnętrznego użyto ferrocenu, którego potencjał jonizacji Fc/Fc⁺ wynosi -5,1 eV.

nowego (EA) i pizerwy energetycznej (Eg) wyrazonych w elektronowonach dla związkow						
	Związek	E_{utl}^{onset} [V]	E ^{onset} _{red} [V]	IP [eV]	EA [eV]	Eg [eV]
	1A	0,73; 0,95	-1,67; -2,04	5,83	3,43	2,40
	2A	0,67; 0,86; 1,02	-1,63; -1,96	5,77	3,47	2,30
	3A	0,67; 0,87	-1,76; -1,92	5,77	3,34	2,43
	4A	0,61; 0,69	-1,69; -1,86	5,71	3,41	2,30
	5A	0,66; 1,03	-1,67; -2,03	5,76	3,43	2,33
	6A	0,71; 0,97	-1,65; -1,97	5,81	3,45	2,36
	1B	0,96; 1,10	-1,32; -1,70; -1,86	6,06	3,78	2,28
	2B	0,90	-1,46; -1,75; -1,99	6,00	3,64	2,36
	5B	0,83; 1,11	-1,35; -1,78; -1,90	5,93	3,75	2,18
	6B	0,92; 1,05	-1,29; -1,63; -1,87	6,02	3,81	2,21
	EA	$\mathbf{A} = \left \mathbf{e}^{-} \right (5, 1 + E_{red}^{onse})$	^t); IP = $ e^{-} (5, 1+E_{ut}^{or}) $	E_{l}^{iset}); Eg = E_{l}^{o}	$E_{utl}^{onset} - E_{red}^{onset}$	

Tabela 51. Wartości potencjałów pików utlenienia oraz redukcji, potencjału jonizacji (IP), powinowactwa elektronowego (EA) i przerwy energetycznej (Eg) wyrażonych w elektronowoltach dla związków renu(I).

Za wyjątkiem związku 2B charakteryzującego się jednym pikiem utlenienia, dla wszystkich pozostałych obserwuje się kilka nieodwracalnych procesów utleniania. Dla związków renu(I) z ligandami opartymi na rdzeniu terpy wartości potencjałów odpowiadających początkowi narastania pierwszego piku utlenienia (E_{utl}^{onset}) mieszczą się w stosunkowo wąskim zakresie 0,61–0,73 V, a dla związków z pochodnymi dppy są nieznacznie wyższe, przyjmując wartości z przedziału 0,83-0,96 V. Przesunięcie piku utleniania w kierunku wyższych wartości przy zmianie terpy na dppy wskazuje, że związki renu(I) z pochodnymi dppy ulegają trudniej utlenieniu w porównaniu z ich analogami na bazie terpy. Związki renu(I) z ligandami dppy charakteryzują się wyższymi wartościami potencjału jonizacji (IP) w porównaniu z ich terpirydynowymi analogami. W obrębie poszczególnych serii obserwuje się niewielki wpływ podstawnika arylowego na wartość potencjału E_{utl}^{onset} , co mogłoby wskazywać, że proces utleniania zlokalizowany jest na centrum metalicznym, gdzie zachodzi utlenienie Re(I)/Re(II). W celu jednak dokładniejszej analizy porównano wartości E_{utl}^{onset} związków renu(I) z wartościami E_{utl}^{onset} dla wolnych ligandów. W przypadku związków renu(I) z podstawnikami naftylowymi i fenantrenowym, wartości potencjałów E_{utl}^{onset} związków koordynacyjnych są znacznie niższe niż wartości E_{utl}^{onset} odpowiednich ligandów. W związkach tych proces utleniania bez wątpienia jest zlokalizowany na centrum metalicznym [44]. Z kolei, związki 3A, 4A, 6A oraz 6B charakteryzują się wartościami E_{utl}^{onset} zbliżonymi do wartości E_{utl}^{onset} dla wolnych ligandów. Może to wskazywać, że proces utleniania zachodzi na podstawniku arylowym, tak jak miało to miejsce dla wolnych ligandów. Z drugiej jednak strony wartości E_{utl}^{onset} związków 3A, 4A, 6A oraz 6B są zbliżone do wartości potencjałów związków renu(I) z podstawnikami naftylowymi i fenantrenowym co może wskazywać na proces utleniania zachodzący na centrum metalicznym. Zatem w przypadku związków 3A, 4A, 6A oraz 6B nie jest możliwym jednoznaczne przypisanie lokalizacji procesu utlenienia.

Otrzymane związki koordynacyjne renu(I) charakteryzują się też kilkoma procesami nieodwracalnej redukcji. Wartości potencjałów odpowiadających początkowi narastania pierwszego piku redukcji E_{red}^{onset} zawierają się w zakresie -1,63 do -1,76 V dla związków renu(I) z pochodnymi *terpy* oraz w przedziale -1,29 do -1,46 V dla związków Re(I) z ligandami na bazie *dppy*. Niewielki wpływ rodzaju podstawnika arylowego na wartość E_{red}^{onset} w obydwu seriach związków renu(I) oraz silna zależność potencjału E_{red}^{onset} od rodzaju rdzenia liganda pozwala wnioskować, że proces redukcji dotyczy rdzenia *terpy* i *dppy*, co jest zjawiskiem typowym dla tego rodzaju związków koordynacyjnych [44]. Przesunięcie piku redukcji w kierunku wyższych wartości przy zmianie *terpy* na *dppy* wskazuje, że związki renu(I) z pochodnymi *dppy* ulegają łatwiej procesowi redukcji w porównaniu z ich analogami na bazie *terpy*. Jest to efekt wprowadzenia dodatkowych atomów azotu w rdzeniu *dppy* i obniżenia w ten sposób energii orbitalu LUMO.

Za wyjątkiem związku **2B**, dla którego przerwa energetyczna E_g jest nieznacznie większa niż dla **2A**, we wszystkich pozostałych przypadkach zmiana rdzenia na *dppy* powoduje obniżenie wartości Eg. Analiza wartości Eg dla związków **1A-6A** pozwala również zauważyć zmniejszenie przerwy energetycznej Eg w rezultacie wprowadzenie podstawnika o mniejszej zawadzie sterycznej, a zatem umożliwiającego lepszą delokalizację gęstości elektronowej na ligandzie *Ar-terpy* (**1A** vs **2A** oraz **3A** vs **4A**). Poziomy HOMO oraz LUMO są dobrze dopasowane do energii granicznych orbitali molekularnych oraz pracy wyjścia odpowiednich komponentów diod, dzieki czemu związki mogą być dobrymi kandydatami do zastosowań w diodach elektroluminescencyjnych (Rysunek 73).

Rysunek 73. Porównanie poziomów orbitali HOMO i LUMO dla związków 1A-6A i 1B-6B z pracami wyjścia dla odpowiednich elementów diod elektroluminescencyjnych.

10.4. Właściwości absorpcyjne

Właściwości absorpcyjne związków koordynacyjnych renu(I) badano w roztworze, stosując rozpuszczalniki o różnej polarności, jak również pomiary widm UV-Vis przeprowadzono dla cienkich warstw utworzonych na bazie omawianych związków (Tabela 52). Dla większości związków do rejestracji widm elektronowych zastosowano dwa rozpuszczalniki chloroform ($\varepsilon_0 = 4,8$) i acetronitryl ($\varepsilon_0 = 37,5$). W przypadku związków **3A** i **4A**, ze względu na ich interesujące właściwości fotoluminescencyjne w DMSO ($\varepsilon_0 = 47,2$), widma UV-Vis zostały wykonane w trzech rozpuszczalnikach CHCl₃, MeCN i DMSO.

Rysunek 74. Widma absorpcyjne związków koordynacyjnych renu(I) w chloroformie i acetonitrylu.

Fabela 52. Położenie maksimum pasr	m absorpcji λ oraz me	olowy współczynnik absor	pcji ε dla związków renu(I).
------------------------------------	-----------------------	--------------------------	----------------------------	----

Związek	Rozpuszczalnik	λ [nm] (ϵ [dm ³ · mol ⁻¹ · cm ⁻¹])
	CHCl ₃	399 (10332), 305 (48211)
1A	MeCN	380 (11372), 301 (42525)
	Cienka warstwa	390, 303
	CHCl ₃	404 (6175), 313 (28162), 269 (36639)
2A	MeCN	382 (8295), 314 (28357), 266 (38577)
	Cienka warstwa	381, 310
	CHCl ₃	416 (6672), 386 (9730), 368 (9051), 351 (7692), 308 (19770), 258 (92485)
3A	MeCN	407 (4100), 384 (7386), 365 (6936), 348 (5616), 311 (12693), 252 (88008)
	DMSO	406 (5670), 388 (8980), 368 (9062), 349 (7583), 328 (13956), 316 (15289), 260 (53314)

	Cienka warstwa	456, 392, 370, 321sh
	CHCl ₃	423 (9141), 312 (35496), 259 (45577)
4.4	MeCN	412 (8356), 305 (33778), 292 (24334), 250 (48204)
4A	DMSO	421 (5836), 360 (10019), 312 (24285), 262 (27508)
	Cienka warstwa	450, 326sh
	CHCl ₃	401 (12655), 300 (62106), 260 (125296), 254 (137908)
5A	MeCN	376 (14735), 297 (53178), 257 (115284), 251 (130020)
	Cienka warstwa	385, 302
	CHCl ₃	409 (14360), 321 (26567), 306 (27838); 274 (34498)
6A	MeCN	395 (15862), 324 (27434), 272 (35784)
	Cienka warstwa	429, 338, 304
	CHCl ₃	436 (9691), 366 (13054), 315 (49268)
1B	MeCN	405 (8217), 311 (37480)
	Cienka warstwa	412, 321
	CHCl ₃	434 (13912), 373 (19581), 330 (6598), 320 (72629), 263 (84643)
2B	MeCN	402 (10739), 319 (49277), 271 (55284) 257 (57494)
	Cienka warstwa	410, 331
	CHCl ₃	434 (11811), 370 (17232), 315 (60433), 259 (129199)
5B	MeCN	402 (8373), 306 (41785), 252 (112008)
	Cienka warstwa	400, 300
	CHCl ₃	438 (14191), 340 (33674), 324 (40078), 276 (48168), 265 (47258)
6B	MeCN	413 (15235), 334 (38056), 324 (38224), 273 (49213), 262 (46483)
	Cienka warstwa	444, 330

Związki renu(I) z ligandami zawierającymi podstawniki naftylowe oraz fenantrenowy (1A, 2A, 5A oraz 1B, 2B, 5B) wykazują właściwości absorpcyjne typowe dla chromoforów [ReX(CO)₃(ligand diiminowy)]^{0/+}, dla których najniższy stan wzbudzony ma charakter ¹MLCT. W ich widmach UV-Vis występują intensywne pasma poniżej 350 nm $(\varepsilon = 2,8-13,8 \cdot 10^4 \text{ [dm}^3 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}\text{]})$ związane z przejściami elektronowymi typu $\pi \rightarrow \pi^*$ w obrębie liganda organicznego oraz bardzo szerokie pasmo o zdecydowanie mniejszym molowym współczynniku ekstynkcji ($\varepsilon = 0, 4-1, 4\cdot 10^4 \, [\text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}]$) w zakresie 350–480 nm odpowiadające przejściom z przeniesieniem ładunku MLCT (Rysunek 74). Wolne ligandy L^{1A}, L^{2A}, L^{5A} oraz L^{1B}, L^{2B}, L^{5B} nie wykazują absorpcji w obszarze powyżej 350 nm (Rysunek 75).

Rysunek 75. Widma absorpcyjne związków koordynacyjnych renu(I) w chloroformie i acetonitrylu w porównaniu z widmami wolnych ligandów.

Położenie pasma ¹MLCT i jego kształt w niewielkim stopniu zmienia się w zależności od rodzaju podstawnika arylowego. W przypadku terpirydynowych związków **1A**, **2A**, **5A** zauważa się jedynie wpływ podstawnika arylowego na wartości współczynników ekstynkcji molowej.

Charakter MLCT najniższego pasma absorpcyjnego związków renu(I) z ligandami zawierającymi podstawniki naftylowe oraz fenantrenowy potwierdza również ujemny solwatochromizm - wyraźne hipsochromowe przesunięcie pasm absorpcji MLCT obserwowane przy przejściu z roztworu chloroformu do bardziej polarnych roztworów acetonitrylowych (Rysunek 76) [37].

Rysunek 76. Widma absorpcyjne związków koordynacyjnych renu(I) w chloroformie i acetonitrylu z uwzględnieniem rodzaju rdzenia triiminowego.

W odniesieniu do związków renu(I) z ligandami zawierającymi podstawniki naftylowe oraz fenantrenowy (**1A**, **2A**, **5A** oraz **1B**, **2B**, **5B**), najniżej energetyczne pasmo związków **6A** i **6B** ulega wyraźnemu batochromowemu przesunięciu, czemu towarzyszy duży wzrost jego intensywności (ε = 0,5–4,9·10⁴ [dm³·mol⁻¹·cm⁻¹]). Przypisać to można udziałowi przejść ILCT dotyczących przeniesienia ładunku z bogatego w elektrony podstawnika pirenowego na π -akceptorową jednostkę *terpy* lub *dppy*. Na udział natomiast przejść MLCT w absorpcji związków **6A** i **6B** w tym zakresie wskazuje ujemny solwatochromizm.

Porównanie profili spektralnych związków **3A** i **4A** potwierdza, że to przez którą pozycję zostanie połączony antracen z centralnym pierścieniem rdzenia ma duży wpływ na właściwości absorpcyjne związku koordynacyjnego, w szczególności w obszarze 330–470 nm (Rysunek 77).

Rysunek 77. Widma absorpcyjne związku 3A i 4A w rozpuszczalnikach o różnej polarności.

Jest to efektem różnic w możliwości delokalizacji gęstości elektronowej ze względu na różny kąt dwuścienny pomiędzy antracenem i centralną pirydyną ligandów *terpy*, zdecydowanie większy w przypadku podstawnika 9-antracenowego. Dla związku **3A** absorpcja w tym obszarze jest w zasadzie sumą przejść $\pi_{An} \rightarrow \pi^*_{An}$ i Re \rightarrow terpy^{*}, na co wskazuje porównanie jego widma UV-Vis z widmami wolnego liganda i antracenu (Rysunek 78).

Rysunek 78. Widma absorpcyjne związków **3A** i **4A** w chloroformie i acetonitrylu w porównaniu z widmami ligandów i antracenu.

Absorpcja w zakresie 330–390 nm jest typowa dla antracenu, podczas gdy niskoenergetyczny "ogon" powyżej 390 nm reprezentuje przejścia MLCT [116-118]. Obserwacje te potwierdzają słabe sprzężenie elektronowe pomiędzy podstawnikiem 9-antracenowym i *terpy* w efekcie dużej zawady przestrzennej pomiędzy tymi jednostkami [119,120].

Z kolei, związek **4A** nie wykazuje typowego (z wyraźną strukturą) pasma absorpcji antracenu. W tym przypadku struktura pasma odpowiadającego przejściom $\pi_{An} \rightarrow \pi^*_{An}$ jest słabo widoczna. Obserwuje się także wzrost intensywności i przesunięcie najniżej energetycznego pasma związku **4A** w kierunku dłuższych fal w odniesieniu do związku **3A**, potwierdzając silniejsze sprzężenie elektronowe pomiędzy antracenem i *terpy* w **4A**. Obserwacje te wskazują, że za absorpcję związku **4A** w obszarze 330–470 nm odpowiadają przejścia IL/ILCT oraz MLCT. Typowo dla związków wykazujących przejścia MLCT obserwuje się dla **3A** i **4A** przesunięcie batochromowe wraz ze spadkiem polarności roztworu (Rysunek 78). Intensywne pasma w wysokoenergetycznym obszarze widma związków **3A** i **4A** są przypisane przejściom $\pi_{terpy} \rightarrow \pi^*_{terpy}$ i $\pi_{An} \rightarrow \pi^*_{An}$. W porównaniu ze związkiem **5A** zawierającym jako podstawnik fenantren - kątowy izomer antracenu – najniżej energetyczne pasmo związków **3A** i **4A** pojawia się przy większych długościach fal.

Zastąpienie rdzenia *terpy* w związkach **1A**, **2A**, **5A** i **6A** na *dppy* skutkowało batochromowym przesunięciem najniżej energetycznego pasma w widmie absorpcji związków **1B**, **2B**, **5B** i **6B** (Rysunek 76). Jest to związane z większą zdolnością ligandów *Ar-dppy* do przyjmowania gęstości elektronowej, co bezpośrednio wynika z obecności dwóch dodatkowych atomów azotu w pierścieniach bocznych i obniżenia energii poziomu LUMO w stosunku do ligandów *Ar-terpy*.

W ciele stałym otrzymane związki wykazują podobne zależności do tych omówionych dla roztworów (Rysunek 79). Dla wszystkich związków najniżej energetyczne pasmo absorpcji pokrywa całkowicie lub częściowo z emisją matrycy PVK:PBD, często wykorzystywanej do konstrukcji diod laboratoryjnych. To nakładanie się pasm absorpcji związku i emisji matrycy PVK:PBD jest istotne w kontekście transferu energii według mechanizmu Förstera [121].

Rysunek 79. Widma absorpcyjne związków **1A-6A** (a) oraz **1B-6B** (b) w cienkiej warstwie porównane z emisją matrycy PVK:PBD.
10.5. Właściwości fotoluminescencyjne

Właściwości fotoluminescencyjne związków koordynacyjnych renu(I) badane były w roztworze acetonitrylu, chloroformie, a dla związków **3A** i **4A** również w DMSO. Ponadto pomiary wykonano w ciele stałym oraz temperaturze 77 K (Tabela 53 i Rysunek 80). Widma emisyjne zostały porównane z widmami ligandów, [ReCl(CO)₃(terpy- κ^2 N)] i [ReCl(CO)₃(4'-Ph-terpy- κ^2 N)] dla związków **1A–6A** oraz z widmami ligandów i [ReCl(CO)₃(4-Ph-dppy- κ^2 N)] dla związków **1B–6B**. Dodatkowo właściwości fotoluminescencyjne związków **3A**, **4A**, **6A** dyskutowano w odniesieniu do właściwości emisyjnych bloków budulcowych ich ligandów organicznych: antracenu, pirenu i 2,2':6',2''-terpirydyny.

Rysunek 80. Widma emisyjne związków renu(I) w chloroformie, acetonitrylu, ciele stałym i 77K.

Tabela 53. Właściwości fotoluminescencyjne związków koordynacyjnych renu(I).								
	Zwiazek	Wzbudzenie	Emisja	Czas życia	φ			
	2. million	[nm]	[nm]	[ns]				
	CHCl ₃	420	660	6,5	7,7			
1A	MeCN	410	654	4,5	1,9			
	77 K (BuCN)	420	522, 558	249,2 μs	_			
-	Ciało stałe	420	628	162,8	4,8			
24	CHCl ₃	450	645	6,1	9,8			
2A	MeCN	405	663	4,0	1,1			
	77 K (BuCN)	420	518, 556	95,6 µs	—			
	Ciało stałe	400	578	102,2	1,6			
	CHCl ₃	445	511	4,9	3,8			
	MeCN	430	627	2,3	4,1			
34	DMSO	430	627	2,8	0.02			
5 11		150	711	14,3 µs	0,02			
	77 K (CH ₃ OH:C ₂ H ₅ OH)	430	587	3,6	_			
			688, 761	12 069 μs				
	Ciało stałe	_	_	_	_			
	CHCl ₃	450	580	7,3	1,8			
	MeCN	430	608	4,0	0,05			
4A	DMSO	430	593	5,7	1.4			
		470	712	22,7 µs	,			
	77 K (CH ₃ OH:C ₂ H ₅ OH)	47/0	/0/, /84	2 590 μs	_			
	Ciało stałe	—	-	-	-			
	CHCl ₃	440	665	4,2	6,8			
5A	MeCN	410	641	3,1	0,6			
	77 K (BuCN)	420	522 sh, 558	104,6 µs	—			
	Ciało stałe	370	619	13,0	0,6			
	CHCl	450	500	4,6	<0,1			
64		150	650, 696 sh	4,4 μs	7,6			
UA	MeCN	420	620	3,3	6,1			
	77 K (BuCN)	440	627, 680, 756	5 738,7 μs	-			
	Ciało stałe	nd	nd	-	—			
	CHCl ₃	480	730	4,5	6,9			
1B	MeCN	400	750	3,4	2,4			
	77 K (BuCN)	400	597	2,1 µs	—			
	Ciało stałe	440	651	55,9	9,7			
	CHCl ₃	480	730	4,9	10,4			
2R	MeCN	385	735	3,5	1,8			
20	77 K (BuCN)	440	600	2,3 μs	—			
	Ciało stałe	440	666	63,1	10,7			
	CHCl ₃	480	736	4,4	6,4			
5B	MeCN	440	737	3,3	5,0			
	77 K (BuCN)	410	595	2,2 µs	—			
	Ciało stałe	435	642	78,9	9,8			

6B	CHCl ₃	475	532 730	8,2 130,9	0,5 10,9
	MeCN	425	520 708	4,0 122,9	0,3 4,4
	77 K (BuCN)	450	632, 694, 770	1 933,9 μs	—
	Ciało stałe	nd	nd	_	_

Związki 1A, 2A i 5A oraz 1B, 2B i 5B charakteryzują się w temperaturze pokojowej pasmami emisji bez zaznaczonej strukturyzacji, a maksima tych pasm są praktycznie niezależnie od wprowadzonego podstawnika. Dla wszystkich tych związków obserwuje się hipsochromowe przesunięcie pasma emisji w ciele stałym i niskiej temperaturze w stosunku do emisji w roztworach w temperaturze pokojowej, zgodnie z efektem rigidochromowym. Czasy życia stanów wzbudzonych w środowisku roztworów wynoszą kilka ns (3,1-6,5 ns). Ulegają natomiast znacznemu wydłużeniu w niskiej temperaturze (2,3-249,2 µs) i w ciele stałym (13,0-162,8 ns). Wszystkie te cechy są typowe dla związków koordynacyjnych renu(I), dla których emisja następuje ze stanu wzbudzonego ³MLCT. Wskazuje na to również pokrywanie się pasm emisyjnych związków 1A, 2A i 5A z emisją [ReCl(CO)₃(terpy-κ²N)], a dla związków 1B, 2B i 5B z pasmem emisji [ReCl(CO)₃(4-Ph-dppy-κ²N)]. Charakter stanu emisyinego ³MLCT związków [ReCl(CO)₃(terpy- κ^2 N)] oraz [ReCl(CO)₃(4-Ph-dppy- κ^2 N)] potwierdzono w badaniach opisanych w pracach [45,63]. Zarówno w środowisku roztworów, jaki i w temperaturze 77 K oraz ciele stałym związki z pochodnymi dppy (1B, 2B i 5B) wykazywały batochromowe przesunięcie względem ich terpirdynowych odpowiedników (1A, 2A i 5A), w efekcie zmniejszenia przerwy energetycznej między orbitalami HOMO i LUMO przy zastąpieniu rdzenia terpy na dppy. W temperaturze 77 K dostrzega się też pewne różnice w profilu pasma emisyjnego pomiędzy 1A, 2A i 5A oraz 1B, 2B i 5B. W przeciwieństwie do 1B, 2B i 5B, których pasmo emisji nie wykazuje żadnej strukturyzacji nawet w niskiej temperaturze, słabe zarysowanie się subtelnej struktury wibronowej jest widoczne dla pasm emisji związków renu(I) z pochodnymi terpirydynowymi. Różnice te łatwo wyjaśnić porównując widma emisji 1A, 2A i 5A oraz 1B, 2B i 5B w 77 K z widmami fosforescencji wolnych ligandów (77 K). Związki 1A, 2A i 5A różnią się od ich analogów z pochodnymi dppy tym, że ich emisja w znacznym stopniu nakłada się z fosforescencją wolnych ligandów (Rysunek 81). Wyjaśnia to delikatnie zaznaczoną strukturyzację pasm emisji związków 1A, 2A i 5A w 77 K i wskazuje na niewielki udział stanu ³IL w emisji tych związków w niskiej temperaturze. Na tej podstawie można też wnioskować, że zmiana rdzenia liganda z terpy na dppy powoduje zwiększenie przerwy między wzbudzonymi stanami ³MLCT i ³IL.

Rysunek 81. Porównanie widm emisji dla 1A, 2A, 5A i 1B, 2B, 5B z widmami fosforescencji ligandów w 77 K.

Za wyjątkiem związku **3A**, związki renu(I) z podstawnikami antracenowymi i pirenowym w temperaturze 77 K wykazują emisję związaną ze stanem ³IL_{aryl}. Charakteryzują się ustrukturyzowanymi pasmami emisji, które w dużym stopniu pokrywają się odpowiednio z emisją pirenu i antracenu, jak również emisją wolnych ligandów. Niewielkie batochromowe przesunięcie pasm badanych związków w odniesieniu do węglowodorów aromatycznych świadczy o nieznacznym udziale ³ILCT (Rysunek 82). W porównaniu do związków **1A**, **2A** i **5A** oraz **1B**, **2B** i **5B** następuje wyraźne batochromowe przesunięcie ich pasma emisji (Rysunek 80). W przypadku związku **3A** obserwuje się dwa pasma emisji w temperaturze 77 K. Wyżej energetyczne szerokie pasmo z delikatnie zaznaczoną strukturyzacją nakłada się z fosforescencją związków **1A**, **2A** i **5A**, wskazując, że odpowiada emisji ze stanu ³MLCT z niewielką domieszką stanu ³IL_{terpy}. Drugie pasmo natomiast jest w pełni ustrukturyzowane i nakłada się w dużym stopniu z pasmem fosforescencji antracenu (An) co wskazuje na dominujący charakter ³IL_{An}.

W temperaturze pokojowej właściwości emisyjne związków **3A** i **4A** badano w trzech różnych rozpuszczalnikach przy zastosowaniu promieniowania wzbudzającego o różnych długościach fal ze względu na fakt, że badania właściwości absorpcyjnych wykazały, że najwyżej energetyczne pasmo ma charakter mieszany IL/ILCT/MLCT.

W roztworze acetonitrylu związki **3A** i **4A** przy wzbudzeniu $\lambda_{exc} > 400$ nm charakteryzują się bardzo szerokim pasmem emisji z maksimum przy 627 nm dla 3A i 609 nm dla 3B, stopniu pokrywającym się z pasmami emisji [ReCl(CO)₃(terpy- κ^2 N)] dużym W $[ReCl(CO)_3(4'-Ar-terpy-\kappa^2N)]$ zawierających pochodne terpirydyny funkcjonalizowane i grupami 1-naftylową, 2-naftylową i 9-fenantrylową. Pozwala nam to wnioskować, że emisja 3A i 4A w MeCN następuje ze stanu wzbudzonego trypletowego o dominującym charakterze MLCT (Rysunek 83). Nieznaczne jednak przesunięcie pasm związków 3A i 4A w kierunku wyższych energii w stosunku do związków referencyjnych może sugerować pewien udział "resztkowej" fluorescencji w efekcie niekompletnego procesu przeniesienia energii pomiędzy stanami ¹IL do ¹MLCT według mechanizm Förstera [93,94,122-124]. Udział fluorescencji w widmach emisji związków 3A i 4A w MeCN staje się bardziej widoczny w przypadku gdy związki są wzbudzane promieniowaniem o mniejszej długości (Rysunek 84).

Rysunek 83. Porównanie widm emisji związków 1A-5A z widmem [ReCl(CO)₃(terpy-κ²N)].

Zastąpienie acetonitrylu mniej polarnym rozpuszczalnikiem (chloroformem) powoduje zauważalne zmiany we właściwościach fotoluminescencyjnych związków **3A** i **4A** w roztworze w temperaturze pokojowej. Związek **3A** w CHCl₃ niezależnie od długości fali promieniowania wzbudzającego wykazuje emisję z maksimum przy około 510 nm, co odpowiada fluorescencji ze stanu ¹IL/¹ILCT. Fosforescencja ze stanu ³MLCT może być w tym przypadku maskowana przez silniejszą fluorescencję lub wygaszana w rezultacie populacji niżej energetycznego poziomu zlokalizowanego na antracenie (³IL_{An}) [94,115,125,126]. Właściwości emisyjne **4A** w chloroformie zależą natomiast od długości fali promieniowania wzbudzającego (λ_{exc}). W rezultacie wzbudzenia $\lambda_{exc} > 420$ nm związku **4A** w CHCl₃ obserwuje się szerokie pasmo z maksimum przy około 580 nm. W porównaniu z wolnym ligandem emisja związku **4A** jest przesunięta batochromowo o ~135 nm. Natomiast w odniesieniu do związków **1A**, **2A** i **5A** pasmo to jest przesunięte hipsochromowo o ~30 nm. Pozwala nam to założyć, że obserwowane pasmo emisji jest efektem nałożenia się fluorescencji ¹IL/¹ILCT i fosforescencji ³MLCT. Obecność dwóch pasm, fluorescencji ¹IL/¹ILCT i fosforescencji ³MLCT, jest natomiast dobrze widoczna w widmie emisji po wzbudzeniu **4A** w CHCl₃ falą $\lambda_{exc} < 420$ nm (Rysunek 84).

W DMSO dla obydwu związków wzbudzanych $\lambda_{exc} > 410$ nm obserwuje się dwa pasma emisji. Szerokie i bardzo słabe pasmo przy wyższych energiach przypada na zakres fosforescencji ze stanu ³MLCT, natomiast ustrukturyzowane pasmo przy dłuższych długościach fali (> 680 nm) reprezentuje emisję ze stanu ³An. Różne czasy zaniku dla emisji z tych stanów wskazują na brak równowagi pomiędzy ³An i ³MLCT. Na podkreślenie zasługuje natomiast fakt, że fosforescencja ze stanu wzbudzonego zlokalizowanego na antracenie jest bardzo rzadko obserwowana w widmach emisji związków w temperaturze pokojowej. Po raz pierwszy opisana została w roku 2012 dla związków Pt(II) [127]. Po wzbudzeniu $\lambda_{exc} = 410$ nm widmo emisyjne związku **4A** nadal wykazuje dwa pasma odpowiadające emisji ze stanów ³MLCT i ³An. Zwiększa się jednak względny udział emisji ³MLCT. Widmo emisji związku **3A** zarejestrowane po wzbudzeniu $\lambda_{exe} = 410$ nm również obejmuje dwa pasma, ale zmienia się ich charakter. To wyżej energetyczne odpowiada fluorescencji ¹IL/¹ILCT, natomiast pasmo przy dłuższych długościach fal pokrywa się z fosforescencją ze stanu ³An.

Rysunek 84. Zależność położenia pasm emisji związków 3A i 4A od długości fali wzbudzającej.

Dwa pasma emisji obserwuje się także w temperaturze pokojowej w widmach związków 6A w CHCl₃ oraz 6B w CHCl₃ i MeCN (Rysunek 85).

Rysunek 85. Emisja związków 6A i 6B w temperaturze pokojowej przy różnych długości fali wzbudzającej.

Poprzez porównanie właściwości emisyjnych związków **6A** i **6B** z właściwościami fotoluminescencyjnymi wolnych ligandów i związków [ReCl(CO)₃(L- κ^2 N)] zawierających pochodne *terpy* lub *dppy* z podstawnikami naftylowymi i 9-fenantrylowym w roztworach argonowanych jak i nieargonowanych można przypisać wyżej energetyczne pasmo fluorescencji ¹IL/¹ILCT, a niżej energetyczne – fosforescencji ze stanu ze stanu ³MLCT. W zależności od długości fali promieniowania wzbudzającego zmienia się stosunek intensywności fluorescencji i fosforescencji. Promieniowanie wzbudzające o krótszych długościach fal zwiększa względny udział fluorescencji. Dla związku **6A** w roztworze MeCN, niezależnie od długości fali promieniowania wzbudzającego, obserwuje tylko jedno, bardzo szerokie pasmo emisji, które może być efektem nałożenia się fluorescencji ¹IL/¹ILCT i fosforescencji ³MLCT. Na podkreślenie zasługuje również fakt, że fluorescencja ¹IL/¹ILCT w związkach **6A** i **6B** ulega znacznemu osłabieniu w porównaniu z wolnymi ligandami (Rysunek 86).

Rysunek 86. Porównanie intensywności emisji fluorescencji liganda L^{6A} i związku 6A.

To osłabienie jest efektem transferu energii ze stanu ¹IL/¹ILCT do ¹MLCT zachodzącego według mechanizmu FRET (*Förster Resonance Energy Transfer*). W celu pełniejszego zrozumienia różnic we właściwościach fotoluminescencyjnych związku **6A** w chloroformie i acetonitrylu dokonano oszacowania wydajności transferu energii ze stanu ¹IL/¹ILCT do ¹MLCT dla **6A** w CHCl₃ i MeCN. Wykorzystano do tego celu zależność

$$EnT = 1 - \frac{QY_{6A}}{QY_{L^{6A}}}$$

gdzie QY_{6A} oznacza wydajność kwantową fluorescencji związku koordynacyjnego, a QY_{L^{6A}} to wydajność kwantowa fluorescencji wolnego liganda [94]. Wyliczona wydajność transferu energii dla **6A** w acetonitrylu wynosi 87%, a w chloroformie 99%. Zgodnie z danymi literaturowymi [94], ta "resztkowa" fluorescencja dla **6A** w acetonitrylu jest wystarczająca do "zamaskowania" emisji ze stanu trypletowego. Z kolei, większa wydajność transferu energii stanu ¹IL/¹ILCT do ¹MLCT umożliwia obserwację w widmie emisji zarówno fluorescencji jak i fosforescencji. Co jednak szczególnie istotne, czasy życia fosforescencji w temperaturze pokojowej związków **6A** w CHCl₃ i **6B** w CH₃CN/CHCl₃ są o 2-3 rzędy wielkości większe niż te dla **1A**, **2A** i **5A** oraz **1B**, **2B** i **5B**. Tak znaczące wydłużenie czasów życia stanu wzbudzonego wskazuje na utworzenie się stanu równowagi pomiędzy blisko leżącymi ³MLCT i ³IL/³ILCT. Dłuższy czas życia **6A** w porównaniu do **6B** wydaje się być wynikiem większej przerwy energetycznej pomiędzy stanami trypletowymi ³MLCT i ³IL_{piren}/³ILCT_{piren} → trimina w przypadku **6A**. Należy jednak zauważyć, że czasy życia fosforescencji **6B** mogą być do pewnego stopnia "zaafektowane" ze względu na "resztkową" fluorescencję.

Dla wszystkich związków dla których stwierdzono występowanie pasma fluorescencji ¹IL/¹ILCT przeprowadzono badania stabilności i fotostabilności tych związków celem wyeliminowania możliwości rozpadu próbki w trakcie pomiaru. Stabilność określono przez pomiar widma absorpcyjnego dokonywanego co 2 godziny przez 26 godzin, a fotostabilność przez pomiar widma co 20 minut przez 2 godziny po poddaniu próbki dzałaniu

promieniowania o długości fali 450 nm. Pomiary wykonano w temperaturze pokojowej. Badania pozwoliły potwierdzić, że wszystkie badane związki są stabilne i fotostabilne (Rysunek 87).

Rysunek 87. Stabilność dla związku 4A (a) i fotostabilność związku 3A (b).

Badania natury najniższego stanu trypletowego związków **3A**, **4A** i **6A** przeprowadzono także z wykorzystaniem czasowo-rozdzielczej spektroskopii emisyjnej (TRES - *time-resolved emission spectra*). Widma TRES zarejestrowane w butyronitrylu w niskiej temperaturze (77 K) dla związków **3A**, **4A** i **6A** prezentuje Rysunek 88. Wyniki tych badań potwierdziły, że w przypadku związków **4A** i **6A** stan ³MLCT ulega szybkiej konwersji do stanu ³IL/³ILCT zlokalizowanego w głównej mierze na podstawniku arylowym liganda *Ar-terpy*. Dla związku **3A** pasma odpowiadające emisji ze stanów ³MLCT i ³IL_{An} są obecne w całym oknie pomiarowym w temperaturze 77K, zgodnie z wynikami pomiarów stacjonarnych.

Rysunek 88. Widma TRES związków 3A, 4A i 6A w temperaturze 77 K.

10.6. Identyfikacja stanów przejściowych za pomocą absorpcji przejściowej

Pomiary absorpcji przejściowej w oparciu o technikę "pompa-sonda", z wykorzystaniem impulsu pompującego o dużym natężeniu i prowadzącego do wzbudzenia cząsteczki oraz impulsu sondującego opóźnionego w stosunku do pierwszego, o zdecydowanie mniejszym natężeniu i służącego do monitorowania zmian absorpcji w próbce, zostały wykonane dla związków 1A, 3A, 4A i 6A. Celem tych badań było wyznaczenie dynamiki procesów fotofizycznych zachodzących po fotowzbudzeniu tych związków oraz określenie natury ich najniższego stanu trypletowego. Do wzbudzenia cząsteczek związków koordynacyjnych renu(I) stosowano impuls pompujący 355 nm (3A, 4A i 6A), 405 nm (3A i 4A) lub 420 nm (1A i 6A), a pomiary prowadzono w chloroformie (1A, 3A, 4A i 6A), acetonitrylu (3A i 4A) i DMSO (3A i 4A). Zarejestrowane widma femtosekundowej spektroskopii absorpcji przejściowej zostały poddane analizie globalnej przy wykorzystaniu programu OPTIMUS [128,129]. Umożliwiło to dopasowanie modelu ewolucji widm do danych pomiarowych, wyznaczenie czasów zaników oraz stowarzyszonych z nimi widm DAS (*decay associated spectra*).

W widmach fsTA związku **1A** (Rysunek 89) obserwuje się tylko dodatnie sygnały, które odpowiadają absorpcji ze stanu wzbudzonego do wyższych poziomów elektronowych (ESA, *Excited-State Absorption*). Istnieje bardzo duże podobieństwo widm fsTA związku **1A** do wcześniej publikowanych danych fsTA dla związków [ReCl(CO)₃(terpy- κ^2 N)] [74] i [ReCl(CO)₃(bipy)] [50,130,131], co pozwala nam stwierdzić, że intensywne pasmo przy 376 nm prezentuje absorpcję anionorodnika terpy⁻⁻, natomiast pasmo ESA w zakresie widzialnym odpowiada przejściu LMCT (*ligand to metal charge transfer*) Cl/L⁻⁻→Re

155

[50,130,131]. Najniższy stan trypletowy związku **1A** ma zatem charakter ³MLCT, podobnie jak dla [ReCl(CO)₃(terpy- κ^2 N)] [74] i [ReCl(CO)₃(bipy)] [50,130,131]. Po fotowzbudzeniu cząsteczek związku **1A** następuje obsadzenie stanu ¹MLCT, który w procesie przejścia międzysystemowego (ISC) ulega konwersji do stanu pośredniego ³IL oraz wzbudzonego ³MLCT. Ten pierwszy ulega przekształceniu się w ³MLCT. Zaproponowany model jest zgodny z wynikami analizy globalnej i dobrze koreluje z rezultatami dla [ReCl(CO)₃(terpy- κ^2 N)] [74] i [ReCl(CO)₃(bipy)] [50,130,131]. Dobrej jakości dopasowanie otrzymano dla trzech składowych z czasami życia 1,8 ps, 85 ps oraz 3550 ps. Pierwsza składowa odpowiada przejściu ze stanu ³IL do ³MLCT, druga składowa opisuje wibracyjną relaksację stanu ³MLCT. Natomiast ostatnia, najdłuższa składowa czasu zaniku związana jest z powrotem ze stanu wzbudzonego związku do stanu podstawowego. Jej wartość jest zbliżona do czasu zaniku wyznaczonego w pomiarach fotoluminescencyjnych. Proces przejścia międzysystemowego następuje w czasie około 140 fs i jest krótszy od funkcji odpowiedzi aparatu IRF wnosząca 175 fs.

Rysunek 89. Podsumowanie pomiarów fsTA dla **1A** przy wzbudzeniu falą o długości 420 nm: mapa 2D (A), widma TA w wybranych czasach (B), i widma związane z zanikiem (DAS) (C).

Widma fsTA dla związku **6A** prezentuje Rysunek 91. Ujemny sygnał w zakresie 340–430 nm to wybielanie pasma podstawowego (*ground state bleaching*, GSB). Jego kształt spektralny jest identyczny z widmem stacjonarnej absorpcji (najniżej energetycznym pasmem). Dla tego związku sygnał ten pokrywa się również częściowo z fluorescencją wolnego liganda L^{6A} (Rysunek 90).

Rysunek 90. Widma TA w wybranych czasach dla zwiazku L^{6A} przy długości fali 355 nm.

Przy większych długościach fal występują pasma ESA, z maksimami przy 517 i 594 nm, utrzymujące się w całym oknie pomiarowym. Ich obecność została także potwierdzona w widmach nanosekundowej spektroskopii absorpcji przejściowej (nsTA) związku **6A** i wolnego liganda L^{6A} (Rysunek 90), co pozwala założyć, że nie występuje żaden dodatkowy stan wzbudzony pomiędzy tymi skalami czasowymi, a najniższy trypletowy stan wzbudzony związku **6A** ma charakter ³IL_{piren}/³ILCT_{piren→terpy}.

Rysunek 91. Podsumowanie pomiarów fsTA dla **6A** przy wzbudzeniu falą o długości 355 i 420 nm: mapa 2D (A), widma TA w wybranych czasach (B), i widma związane z zanikiem (DAS) (C).

W analizie globalnej najlepsze dopasowanie uzyskano dla modelu z czterema składowymi (Tabela 54, Rysunek 91(C)), co pozwoliło nam zaproponować następującą sekwencję procesów fotofizycznych zachodzących po akcie absorpcji fotonu przez cząsteczki związku **6A** (Rysunek 92).

Rysunek 92. Zaproponowany schemat przejść pomiędzy poziomami energetycznymi w cząsteczkach związku 6A.

Energie stanów ¹IL i ¹MLCT zostały wyznaczone odpowiednio z onsetu najniższego energetycznie pasma absorpcji dla liganda L^{6A} i związku [ReCl(CO)₃(terpy- κ^2 N)] w CHCl₃, a energie ³IL i ³MLCT odpowiednio z onsetu fosforescencji liganda L^{6A} w temperaturze 77 K i emisji [ReCl(CO)₃(terpy- κ^2 N)] w CHCl₃ w temperaturze pokojowej. W rezultacie absorpcji

promieniowania 355 nm cząsteczki związku **6A** zostają wzbudzone głównie do stanu ${}^{1}\text{IL}_{\text{piren}}$, po czym następuje transfer energii ze stanu ${}^{1}\text{IL}_{\text{piren}}$, ILCT_{piren→terpy}, po czym następuje transfer energii ze stanu ${}^{1}\text{IL}_{\text{piren}}$, ILCT_{piren→terpy} do stanu ${}^{1}\text{MLCT}$ według mechanizmu *FRET*, a ${}^{1}\text{MLCT}$ ulega w procesie przejścia międzysystemowego konwersji do stanu ${}^{3}\text{MLCT}$. Cały ten proces opisuje pierwsza składowa z czasem zaniku 0,41 ps. Drugi komponent, DAS₂ z czasem zaniku 8,6 ps opisuje proces relaksacji cząsteczek w stanie ${}^{3}\text{MLCT}$, natomiast składowa DAS₃ z czasem zaniku 136 ps odnosi się do tworzenia się stanu równowagi pomiędzy stanami ${}^{3}\text{MLCT}$ oraz ${}^{3}\text{IL}$, Ostatni komponent, DAS₄ z przyporządkowanym nieskończonym czasem zaniku, odpowiada dezaktywacji cząsteczek związku **6A** do stanu podstawowego.

Na widmach fsTA związku **3A** obserwujemy silny dodatni sygnał w zakresie 410–460 nm (Rysunek 93). Jest to pasmo charakterystyczne dla przejść T \rightarrow T_n antracenu, co wskazuje jednoznacznie, że stan trypletowy związku **3A** ma charakter ³An [63,65,69,86,103,132]. Pasmo to zaczyna narastać natychmiast po fotowzbudzeniu i utrzymuje się do końca okna pomiarowego, ponieważ czas zaniku ³An jest zdecydowanie dłuższy niż maksymalne opóźnienie czasowe w tej metodzie [70].

Rysunek 93. Podsumowanie pomiarów fsTA dla **3A** przy wzbudzeniu falą o długości 355 i 405 nm: mapa 2D (A), widma TA w wybranych czasach (B), i widma związane z zanikiem (DAS) (C).

W analizie globalnej najlepsze dopasowanie do danych pomiarowych uzyskano dla czterech komponentów, nie uwzględniając składowej odpowiadającej przejściu międzysystemowemu (¹MLCT \rightarrow ³MLCT) o czasie z krótszym niż czas odpowiedzi aparatu (Tabela 54). Bazując na zmianach spektralnych obserwowanych przy bardzo krótkich czasach opóźnienia, danych literaturowych dla związków zawierających w swojej budowie antracen [73,86,122,133] oraz wynikach analizy globalnej został zaproponowany następujący schemat procesów fotofizycznych następujących w cząsteczkach związku **3A** po absorpcji promieniowania 355 nm lub 405 nm (Rysunek 94).

Rysunek 94. Zaproponowany schemat przejść pomiędzy poziomami energetycznymi w cząsteczkach związku 3A.

Energie stanów ¹IL i ¹MLCT zostały wyznaczone odpowiednio z onsetu najniższego energetycznie pasma absorpcji dla wolnego liganda oraz związku [ReCl(CO)₃(terpy- κ^2 N)] w CHCl₃, a energie ³IL i ³MLCT – odpowiednio z onsetu fosforescencji liganda w temperaturze 77 K i emisji [ReCl(CO)₃(terpy- κ^2 N)] w CHCl₃ w temperaturze pokojowej.

³An: wskazuja Wyniki badań na dwa możliwe kanały populacji stanu $^{1}MLCT \rightarrow ^{3}MLCT \rightarrow ^{3}An \ i \ S_{1}(^{1}An) \rightarrow T_{2}(^{3}An) \rightarrow T_{1}(^{3}An)$. Stan $^{3}MLCT$ na widmie reprezentowany jest przez pasma ESA z maksimami przy około 385 i 495 nm [122], co szczegółowo dyskutowano dla związku 1A. Zgodnie natomiast z danymi literaturowymi [86] pasma ESA dla przejść $T_2(^3An) \rightarrow T_n(^3An)$ oczekuje się w zakresie 500–600 nm. W przypadku związku **3A** pasma odpowiadające przejściom ${}^{3}(Cl/L^{-} \rightarrow Re)$ i $T_{2}({}^{3}An) \rightarrow T_{n}({}^{3}An)$ częściowo się nakładają. Procesom $S_1(^1An) \rightarrow T_2(^3An)$, $T_2(^3An) \rightarrow T_1(^3An)$ oraz $^3MLCT \rightarrow ^3An$ przypisano odpowiednio następujące czasy zaniku 1,6 ps, 97 ps i 1360 ps. Ostatni komponent, DAS₅ z przyporządkowanym nieskończonym czasem zaniku, odpowiada dezaktywacji cząsteczek związku 3A do stanu podstawowego.

Analogicznie jak dla **3A**, w widmie fsTA związku **4A** dominuje pasmo ESA odpowiadające przejściom $T \rightarrow T_n$ antracenu [63,65,69,86,103,132]. Pasmo to obserwuje się w całym oknie

pomiarowym gdyż czas zaniku ³An jest zdecydowanie dłuższy niż maksymalne opóźnienie czasowe w tej metodzie [70]. W porównaniu do 3A pasmo to jest jednak poszerzone i wykazuje wyraźne batochromowe przesunięcie, co wynika z silniejszego sprzężenia elektronowego pomiędzy antracenem a rdzeniem terpirydyny w związku 4A. Obecność słabego pasma z maksimum przy 640 nm wskazywać może na zdecydowanie większy udział ³ILCT dla związku 4A (Rysunek 95). W odniesieniu do 3A zmienia się także dynamika procesów indukowanych światłem. Bardziej planarna geometria liganda przyspiesza tworzenie się stanu ³An w związku 4A. Najlepsze dopasowanie do danych pomiarowych uzyskano w analizie globalnej dla trzech komponentów (Tabela 54). Pierwsza składowa (DAS_1) odpowiada przejściu międzysystemowemu i powstaniu oscylacyjnie wzbudzonego stanu ³An, który następnie ulega relaksacji (DAS₂). Ostatni komponent, DAS₃ z przyporządkowanym nieskończonym czasem zaniku, odpowiada dezaktywacji cząsteczek związku 4A do stanu podstawowego.

Rysunek 95. Podsumowanie pomiarów fsTA dla **4A** przy wzbudzeniu falą o długości 355 i 405 nm: mapa 2D (A), widma TA w wybranych czasach (B), i widma związane z zanikiem (DAS) (C).

		CHCl ₃		CHCl ₃	MeCN	DMSO
	t [ps]	405 nm	420 nm		355 nm	
	t1		1,82			
1A	t2		84,65			
	t3		3554,33			
	t1			0,18		
2 4	t2	1,53		1,61	1,93	2,18
ЗА	t3	92,9		97,37	52,0	269,6
	t4	1964		1360	1730	1621
	t5	Inf		Inf	Inf	Inf
	t1	0,58		0,23	0,18	0,29
4 A	t2	168,8		172,5	105,1	465,3
	t3	Inf		Inf	Inf	Inf
	t1		0,24	0,41		
61	t2		5,61	8,61		
UA	t3		130,54	136,27		
	t4	_	140 000	140 000		_

 Tabela 54. Czasy uzyskane z analizy globalnej.

10.7. Związki koordynacyjne renu(I) jako warstwy aktywne w laboratoryjnych diodach elektroluminescencyjnych

Badania elektroluminescencyjne związków koordynacyjnych renu(I), wykonane we współpracy w grupą badawczą prof. Ewy Schab-Balcerzak, rozpoczęto od pomiarów emisyjnych dla wszystkich związków w postaci cienkich warstw na substracie szklanym oraz związków w postaci 15-procentowej blendy z mieszaniną PVK:PBD (50:50% wagowych). W formie cienkiej warstwy tylko dwa związki renu(I) wykazywały emisję – **2A** oraz **1B**, a w formie blendy - emisję potwierdzono dla **1A**, **2A**, **5A** i **5B**. W widmach tych drugich, obok pasma emisji związku zarejestrowano pasmo emisji pochodzące od mieszaniny PVK:PBD, występujące przy mniejszych długościach fali. W związku z tym, że dla blend zawierających 15 % badanego związku proces przenoszenia energii z matrycy do luminoforu był niecałkowity lub nie występował w ogóle, zredukowano zawartość związku do 2 %. W tym przypadku zarejestrowano luminescencję o małej intensywności dla wszystkich związków za wyjątkiem **2B** i **6B**.

W kolejnym etapie wybrane związki zastosowano do budowy dwóch rodzajów diod: ITO/PEDOT:PSS/związek/Al, gdzie związek renu(I) stosowany jest w postaci czystej oraz diody typu gość-gospodarz ITO/PEDOT:PSS/PVK:PBD:związek/Al, w których badane związki stanowią 1-, 2- lub 15-procentowy dodatek do matrycy PVK:PBD.

i ubelu eet Elektrotalinnebeene jjie wlabelwobel budunjen uizquzen OEED.								
Związek	Zawar ITO/PEDO	tość procentowa z w urządzeniu YT:PSS/PVK:PBD:	ITO/PEDOT:PSS/związek/Al					
	1%	2%	15%					
	λ _{EL} [nm]	λ _{EL} [nm]	λ _{EL} [nm]	$\lambda_{\rm EL}$ [nm]				
1A	595	590	600	—				
2A	—	595	610	nd				
3A	500sh, 638, 705	640, 701	622, 702, 777sh	715				
4A	600, 705, 778	604, 709, 781	604, 707, 784	nd				
5A	—	585	610	_				
6A	640	645	650	—				
1B	—	625	636	nd				
2B	_	_	_	_				
5B	—	615	640	_				
6B	_	_	_	_				

 Tabela 55. Elektroluminescencyjne właściwości badanych urządzeń OLED.

Do budowy diod typu ITO/PEDOT:PSS/związek/Al wykorzystano związki 2A, 3A, 4A oraz 1B, uzyskując słabe pasmo emisji (przy 715 nm) jedynie dla 3A przy zastosowaniu dużego napięcia 20 V. Obserwowana emisja odpowiadała fosforescencji ze stanu ³An.

Do konstrukcji urządzeń ITO/PEDOT:PSS/PVK:PBD:związek/Al (typu gość-gospodarz) zastosowano natomiast wszystkie związki renu(I) za wyjątkiem 2B i 6B. Urządzenia te wykazywały elektroluminescencję z zakresu 585-784 nm, ale charakteryzowały się słabą intensywnością przy stosowaniu dość wysokich napięć z przedziału 18-27 V. Maksymalną intensywność stwierdzono dla diody gdzie związkiem był 1B i stanowił on 15 % warstwy aktywnej. Za wyjątkiem urządzeń ze związkami 3A i 4A, widma elektroluminescencji charakteryzowały się jednym pasmem (Rysunek 96). Porównując analogiczne związki o rdzeniach terpy i dppy obserwuje się znaczne batochromowe przesunięcie pasm emisji przy zmianie rdzenia z terpy na dppy. Wpływ podstawnika można było analizować jedynie dla związków z rdzeniem terpirydynowym. Maksima emisji dla związków 1A, 2A i 5A we wszystkich zawartościach procentowych w matrycy są do siebie bardzo zbliżone. Emisja związku 6A była przesunięta batochromowo o około 40 nm względem nich. Widmo elektroluminescencyjne urządzeń zawierających związki z podstawnikami antracenowymi 3A i 4A obejmowało kilka pasm. Swoim wyglądem przypominało widmo tych związków w niskiej temperaturze (77 K), z pasmami emisji ze stanów ³MLCT i ³An. W przypadku tych urządzeń dodatek składnika emitującego światło niebieskie z zakresu 400-500 nm mógłby skutkować powstaniem diody emitującej światło białe.

Zmniejszenie zawartości związku koordynacyjnego w matrycy z 15 do 2% powodowało obniżenie intensywności emitowanego promieniowania, za wyjątkiem związków 1A, 3A, 4A i 6A, dla których intensywność znacznie wzrastała. Dalsza redukcja procentowej zawartości związków 1A i 6A w matrycy do 1% spowodowała spadek intensywności pasma w porównaniu

z widmem dla zawartości 2-procentowej. Z kolei, obniżenie zawartości związków **3A** i **4A** w matrycy skutkowało osiągnięciem wyższej intensywności w stosunku do tych z 2- i 15-procentowym udziałem.

Rysunek 96. Widma elektroluminescencji dla wybranych diod: **1A**: 1% (a), 2% (b), 15% (c); **3A** (d); **4A** (e); **1B** (f) oraz **5B** (g).

10.8. Ocena zdolności związków renu(I) do generowania tlenu singletowego

Cząsteczki związku występujące po wzbudzeniu w stanie trypletowym i cechujące odpowiednio długim czasem życia stanu trypletowego mogą w sposób efektywny przekazywać swoją energię na cząsteczki tlenu, w wyniku czego powstaje tlen singletowy, charakteryzujący się wyjątkowo silnymi właściwościami utleniającymi. Toksyczność tlenu singletowego w organizmach żywych jest konsekwencją jego wysokiej reaktywności wobec białek zawierających takie aminokwasy jak histydyna, cysteina, tyrozyna, metionina czy tryptofan.

Badania zdolności do generowania tlenu singletowego wykonane zostały dla związków **3A** i **4A** charakteryzujących się najdłyższymi czasami życia (odpowiednio 14 μ s dla **3A** i 22 μ s dla **4A**) w roztworze DMSO w temperaturze pokojowej. Do oceny zdolności do generowania ${}^{1}O_{2}$ zastosowano metodę pośrednią z użyciem niezwykle wrażliwego na obecność tlenu singletowego difenyloizobenzofuranu (DPBF), który reagując z tlenem singletowym tworzy wewnętrzny nadtlenek rozkładający się do 1,2-dibenzoilobenzenu [134-137] (Schemat 3). Pomiary prowadzono w DMSO, a jako substancję odniesienia wykorzystano związek [Ru(bipy)₃](PF₆)₂, który jest jednym z najwydajniejszych związków generujących tlen singletowy ($\Phi_{\Delta O2}$ - 0,66 w DMSO).

Schemat 3. Schemat reakcji DPBF z tlenem singletowym.

Wyniki badań dla związków **3A** i **4A** oraz [Ru(bipy)₃](PF₆)₂ przedstawiono na Rysunku 97. Obydwa badane związki renu(I) wykazują zdolność generacji ¹O₂, a względne wartości wydajności kwantowych generowania tlenu singletowego ($\Phi_{\Delta O2}$) wynoszą 0,42 dla **3A** i 0,45 dla **4A**. W porównaniu ze związkiem wzorcowym [Ru(bipy)₃](PF6)₂] oba związki wykazują mniejszą zdolność do generowania tlenu singletowego. Zwiększenie wydajności kwantowej tworzenia tlenu singletowego związku **4A** w porównaniu z **3A** dobrze koreluje z wydłużeniem czasu życia dla pierwszego z nich.

Rysunek 97. Zmiany przebiegu widma UV-Vis dla różnych czasów naświetlania mieszaniny DPBF i związku **3A** (a) i **4A** (b) oraz względne zmiany absorbancji DPBF przy 417 nm w określonych odstępach czasu (c)

10.9. Obliczenia teoretyczne

W celu pełniejszego zrozumienia wpływu podstawnika aromatycznego na właściwości fotofizyczne związków [ReCl(CO)₃(L-κ²N)] przeprowadzone zostały również teoretyczne metodą opartą na funkcjonałów obliczenia teorii gestości (DFT) oraz czasowo-zależnej teorii funkcjonałów gęstości (TD-DFT). Obliczenia były wykonywane we Wrocławskim Centrum Sieciowo-Superkomputerowym (http://www.wcss.wroc.pl) w ramach grantu obliczeniowego UŚ i obejmowały optymalizację geometrii stanu podstawowego dla singletu (S₀) i stanu wzbudzonego dla trypletu (T₁), określenie energii orbitali molekularnych, przyporządkowanie przejść elektronowych poszczególnym pasmom widma absorpcyjnego, określenie energii i charakteru pasma emisyjnego, jak również wyznaczenie potencjału jonizacji (IP), powinowactwa elektronowego (EA), przerwy energetycznej (Eg). W obliczeniach zastosowano funkcjonał PBE0 oraz bazy def2-TZVPD dla atomów renu i def2-TZVP dla pozostałych atomów, które gwarantowały dobre odzwierciedlenie wyników eksperymentalnych, zarówno strukturalnych jak i spektroskopowych. Porównanie długości wiązań i miar kątów wiązań uzyskanych na drodze pomiaru rentgenostrukturalnego z parametrami teoretycznymi dla związku 1A obejmuje Tabela 56.

	eksperyment	obliczenia		eksperyment	obliczenia		
Dłu	gość wiązania[.	Å]	Kąt między wiązaniami [°]				
Re(1)-C(1)	1,948(4)	1,901	C(2)-Re(1)-C(1)	90,57(17)	89,94		
Re(1)-C(2)	1,921(4)	1,923	C(3)-Re(1)-C(1)	90,69(14)	88,51		
Re(1)-C(3)	1,913(4)	1,906	C(3)-Re(1)-C(2)	87,81(17)	85,88		
Re(1) - N(1)	2,164(3)	2,179	C(1)-Re(1)-N(1)	92,57(14)	93,89		
Re(1)-N(2)	2,218(3)	2,240	C(2)-Re(1)-N(1)	174,53(14)	175,05		
Re(1)-Cl(1)	2,4847(9)	2,499	C(3)-Re(1)-N(1)	96,62(14)	97,34		
C(1)-O(1)	1,076(5)	1,155	C(1)-Re(1)-N(2)	97,00(11)	97,32		
C(2)–O(2)	1,148(5)	1,149	C(2)-Re(1)-N(2)	100,79(14)	102,09		
C(3)–O(3)	1,145(4)	1,153	C(3)-Re(1)-N(2)	168,35(12)	170,07		
			N(1)-Re(1)-N(2)	74,38(10)	74,33		
			C(1)-Re(1)-Cl(1)	177,27(10)	178,13		
			C(2)-Re(1)-Cl(1)	91,46(13)	91,83		
			C(3)-Re(1)-Cl(1)	91,22(10)	92,23		
			N(1)-Re(1)-Cl(1)	85,27(7)	84,31		
			N(2)-Re(1)-Cl(1)	80,82(7)	81,70		

Tabela 56. Długości wiązań i miary kątów wyznaczone eksperymentalnie i teoretycznie dla związku 1A.

Dane dotyczące energii poziomów orbitalnych HOMO i LUMO, przerwy energetycznej HOMO–LUMO i konturów orbitali molekularnych HOMO i LUMO dla wszystkich otrzymanych związków renu(I) zostały przedstawione na Rysunkach 98 i 99 oraz Tabeli 57.

	HOMO [eV]		LUMO [eV]		przerwa energetyczna[eV]	
Związek	terpy (A)	dppy (B)	terpy (A)	dppy (B)	terpy (A)	dppy (B)
1A/1B	-6,44	-6,49	-2,60	-2,94	3,84	3,54
2A/2B	-6,44	-6,49	-2,64	-2,95	3,79	3,53
3A/3B	-5,98	_	-2,60	_	3,37	—
4A/4B	-5,98	—	-2,70	_	3,28	_
5A/5B	-6,44	-6,48	-2,61	-2,95	3,83	3,52
6A/6B	-6,05	-6,08	-2,63	-2,95	3,41	3,13

Tabela 57. Porównanie energii poziomów HOMO i LUMO oraz przerwy energetycznej dla związków renu(I)z ligandami opartymi na rdzeniu *terpy* i *dppy*.

Rysunek 98. Kontury orbitali molekularnych HOMO i LUMO związków koordynacyjnych renu(I).

Rysunek 99. Porównanie energii poziomów HOMO i LUMO dla związków renu(I) z ligandami opartymi na rdzeniu *terpy* (czarny) i *dppy* (niebieski).

Dla wszystkich związków renu(I) najniższy niezajęty orbital LUMO ma charakter antywiążacych orbitali π^* zlokalizowanych w przeważającej części na skoordynowanych pierścieniach rdzenia *terpy* lub *dppy*. Udział orbitali podstawnika arylowego w LUMO jest nieznaczny, w związku z czym podstawnik arylowy ma niewielki wpływ na energię tego poziomu. Energia orbitalu LUMO dla związków **1A–6A** waha się w zakresie od -2,70 do -2,60 eV, a dla **1B–6B** od -2,95 do -2,94 eV. Zmiana rdzenia *terpy* na *dppy* skutkuje stabilizacją orbitalu LUMO o około 0,3 eV.

Najwyżej zajęty orbital HOMO związków 1A, 2A i 5A oraz 1B, 2B i 5B zlokalizowany jest w przeważającym stopniu na fragmencie {Re(CO)₃Cl}. Energia LUMO praktycznie nie zależy od podstawnika arylowego. Również zmiana rdzenia liganda z *terpy* na *dppy* powoduje tylko nieznaczne zmiany energii tego poziomu, rzędu 0,05 eV. W związkach 3A, 4A, 6A i 6B orbital HOMO ma charakter orbitali π podstawnika arylowego, a jego energia ulega wyraźnemu podwyższeniu w stosunku do energii HOMO związków renu(I) z HOMO zlokalizowanym na fragmencie {Re(CO)₃Cl}, ze wzrostem energii o około 0,4 eV.

Przerwa energetyczna HOMO–LUMO dla związków 1A, 2A i 5A mieści się w zakresie 3,79–3,84 eV i jest porównywalna do literaturowych wartości dla [ReCl(CO)₃(terpy- κ^2 N)] (3,89 eV) i [ReCl(CO)₃(4'-Ph-terpy- κ^2 N)] (3,82 eV) [45,63]. Również dla analogów z pochodnymi *dppy* 1B, 2B i 5B przerwa energetyczna HOMO–LUMO zmienia się w niewielkim zakresie (3,52–3,54 eV) w zależności od podstawnika arylowego. W porównaniu jednak do związków 1A, 2A i 5A ulega wyraźnemu obniżeniu, co jest efektem stabilizacji poziomu LUMO w związkach 1B, 2B i 5B. Zdecydowanie niższe wartości przerwy energetycznej HOMO–LUMO obserwuje się dla związków 3A, 4A, 6A i 6B, w których orbital

HOMO ma charakter orbitali π podstawnika arylowego, a jego energia ulega wyraźnemu podwyższeniu.

Dla badanych związków wyznaczono też teoretyczne wartości potencjału jonizacji (IP) i powinowactwa elektronowego (EA) (wartości wertykalne i adiabatyczne), przerwy energetyczne Eg, a na ich podstawie policzono energie reorganizacji λ_{dziury} i $\lambda_{elektrony}$ oraz potencjały ekstrakcji dziur (HEP) i elektronów (EEP) (Tabela 58). Parametry te są istotne dla charakterystyki materiałów o potencjalnych zastosowaniach w technologii OLED. Niska wartość IP związków fotoluminescencyjnych oznacza łatwiejsze wstrzykiwanie dziur z warstwy transportującej dziury do emitera, natomiast wysoka wartość EA łatwiejsze wprowadzenie elektronów z warstwy je transponującej. Dla wydajnego procesu transportu ładunku niezbędne jest również aby materiały cechowały się niskimi wartościami energii reorganizacji λ_{dziury} i $\lambda_{elektrony}$, które odzwierciedlają straty energii ze względu na relaksację geometryczną związaną z przejściem między stanem obojętnym a zjonizowanym. Korzystnym jest też aby związki posiadały zbliżone wartości λ_{dziury} i $\lambda_{elektrony}$. Materiały tego typu określa się jako ambipolarne [138,139].

7 wie zek	IP(v)	IP(a)	EA(v)	EA(a)	λ_{dziury}	λ _{elektrony}	HEP	EEP	Eg (a)
Związek	[eV]	[eV]	[eV]	[eV]	[eV]	[eV]	[eV]	[eV]	[eV]
1A	6,17	5,84	2,88	3,05	0,71	0,34	5,46	3,22	2,79
2A	6,16	5,83	2,92	3,08	0,71	0,32	5,45	3,24	2,75
3A	5,70	5,62	2,88	3,06	0,15	0,35	5,55	3,23	2,56
4 A	5,70	5,63	2,97	3,12	0,15	0,29	5,55	3,26	2,50
5A	6,17	5,84	2,89	3,06	0,70	0,34	5,47	3,23	2,78
6A	5,77	5,70	2,91	3,07	0,16	0,31	5,62	3,22	2,63
1B	6,22	5,83	3,22	3,38	0,99	0,33	5,23	3,54	2,45
2B	6,21	5,82	3,22	3,37	1,01	0,31	5,20	3,53	2,45
5B	6,22	5,83	3,23	3,39	1,01	0,33	5,21	3,55	2,44
6B	5,81	5,74	3,23	3,38	0,16	0,31	5,65	3,54	2,36

Tabela 58. Obliczone wartości potencjał jonizacji (IP), powinowactwa elektronowego (EA) - wertykalne (v) i adiabatyczne(a), przerwy energetycznej Eg oraz energii reorganizacji i potencjałów ekstrakcji dziur (HEP) i elektronów (EEP) dla zwiazków koordynacyjnych renu(I).

Analiza danych zawartych w Tabeli 58 powala wyciągnąć następujące wnioski:

 wprowadzenie podstawników antracenowych i pirenowego do centralnej pirydyny liganda skutkuje obniżeniem wartości przerwy energetycznej i potencjału jonizacji związku renu(I), co oznacza, że mogą one mieć lepsze predyspozycje do efektywnego transportu dziur;

- związki renu(I) z pochodnymi *dppy* charakteryzują się wyższymi wartościami IP, ale cechują się mniejszymi wartościami przerw energetycznych w stosunku do związków z rdzeniem *terpy*;
- wartości powinowactwa elektronowego związków 1A–6A nie zależą od wprowadzonego podstawnika, natomiast są wyraźnie niższe niż dla ich analogów 1B–6B;
- pod względem wartości parametru EA wśród związków 1A–6A można wyróżnić dwie podgrupy: pierwsza 1A, 3A i 5A o niższych wartościach i druga 2A, 4A i 6A o wartościach wyższych, co wskazuje, że mniejsza zawada steryczna podstawników arylowych sprzyja tworzeniu związków o lepszych właściwościach do transportu elektronów;
- najniższymi wartościami λ_{dziury} charakteryzują się związki **3A**, **4A**, **6A** i **6B**;
- zmiana rdzenia z *terpy* na *dppy* powoduje wzrost wartości parametru λ_{dziury} związku renu(I), natomiast nie ma znaczącego wpływu na parametr λ_{elektrony};
- w grupie związków 1A–6A zauważa się, że mniejsza zawada steryczna podstawników arylowych sprzyja obniżeniu wartości parametru λ_{elektrony};
- najwyższymi wartościami parametru HEP charakteryzują się związki **3A**, **4A**, **6A** i **6B**, natomiast parametr EEP jest praktycznie niezależny od rodzaju podstawnika;
- związki oparte na rdzeniu *dppy* charakteryzują się niższymi wartościami parametru HEP i wyższymi EEP.

Biorąc pod uwagę wszystkie związki zawarte w Tabeli 58 zdecydowanie na tle innych wyróżniają się **3A**, **4A**, **6A** i **6B**, posiadając korzystne parametry do zastosowań w optoelektronice.

Wyniki obliczeń teoretycznych dotyczących energii wzbudzenia, długości fal, mocy oscylatora i charakteru przejść przypisanych najniżej energetycznemu pasmu w widmach UV-Vis otrzymanych związków renu(I) zostały zebrane na Rysunku 100 i w Tabeli 59.

Absorpcja	Obliczone przejścia elektronowe							
doświadczalna, λ [nm] (10⁴ε [M-¹cm-¹])	Rodzaj przejścia	Rodzaj przejścia Charakter		E[eV] λ[nm]				
	`1A							
	$S_0 \rightarrow S_1$	MLCT	2,90	426,4	0,0111			
280 (1.14)	$S_0 \rightarrow S_2$	MLCT	3,09	400,6	0,1356			
580 (1,14)	$S_0 \rightarrow S_3$	IL,MLCT	3,33	371,9	0,0653			
	$S_0 \rightarrow S_4$	MLCT	3,38	366,6	0,0037			
2A								
	$S_0 \rightarrow S_1$	MLCT	2,88	429,7	0,0142			
272 (0.00)	$S_0 \rightarrow S_2$	MLCT	3,07	404,0	0,1616			
373 (0,90)	$S_0 \rightarrow S_3$	MLCT	3,35	369,6	0,0242			
	$S_0 \rightarrow S_4$	IL,MLCT	3,38	365,8	0,0763			

 Tabela 59. Charakterystyka przejść elektronowych wyznaczonych metodą TD-DFT i przypisanych najniżej energetycznego pasmu związków koordynacyjnych renu(I).

3A						
	$S_0 \rightarrow S_1$	ILCT	2,71	457,1	0,0582	
407 (0 (7)	$S_0 \rightarrow S_2$	MLCT	2,92	425,3	0,0098	
40/(0,6/)	$S_0 \rightarrow S_3$	MLCT	3,12	396,8	0,1061	
364 (0,97)	$S_0 \rightarrow S_4$	IL/ILCT	3,19	388,5	0,1037	
303 (0,91)	$S_0 \rightarrow S_5$	IL/ILCT	3,36	369,2	0,0066	
	$S_0 \rightarrow S_6$	MLCT	3,38	366,6	0,0048	
		4A				
	$S_0 \rightarrow S_1$	IL/ILCT	2,73	454,3	0,1772	
	$S_0 \rightarrow S_2$	MLCT	2,87	431,9	0,0046	
412 (0,84)	$S_0 \rightarrow S_3$	MLCT	3,07	403,8	0,1063	
	$S_0 \rightarrow S_4$	IL/ILCT	3,29	376,3	0,031	
	$S_0 \rightarrow S_5$	MLCT	3,34	371,3	0,0046	
	$S_0 \rightarrow S_6$	IL/ILCT	3,50	354,3	0,0835	
		5A				
	$S_0 \rightarrow S_1$	MLCT	2,90	427,3	0,0101	
376 (1.47)	$S_0 \rightarrow S_2$	MLCT	3,09	401,3	0,1624	
570(1,47)	$S_0 \rightarrow S_3$	IL,MLCT	3,30	375,6	0,0700	
	$S_0 \rightarrow S_4$	MLCT	3,38	367,3	0,0033	
		6A				
	$S_0 \rightarrow S_1$	ILCT/IL/MLCT	2,83	438,5	0,2840	
	$S_0 \rightarrow S_2$	MLCT	2,91	425,7	0,0497	
391 (3,16)	$S_0 \rightarrow S_3$	MLCT	3,13	396,6	0,0383	
	$S_0 \rightarrow S_4$	MLCT	3,37	367,9	0,0093	
	$S_0 \rightarrow S_5$	ILCT/IL	3,38	366,6	0,2982	
	1	<u>1B</u>				
	$S_0 \rightarrow S_1$	MLCT	2,59	478,4	0,0093	
405 (0.82)	$S_0 \rightarrow S_2$	MLCT	2,85	435,4	0,1162	
405 (0,82)	$S_0 \rightarrow S_3$	IL/MLCT	3,07	403,2	0,0425	
	$S_0 \rightarrow S_4$	MLCT	3,11	399,0	0,0023	
	-	2B				
	$S_0 \rightarrow S_1$	MLCT	2,59	478,2	0,0114	
402 (1.07)	$S_0 \rightarrow S_2$	MLCT	2,84	435,9	0,1526	
402 (1,07)	$S_0 \rightarrow S_3$	MLCT	3,10	399,3	0,0104	
	$S_0 \rightarrow S_4$	IL/MLCT	3,16	392,3	0,0853	
		5B				
	$S_0 \rightarrow S_1$	MLCT	2,58	479,6	0,0093	
402 (0.84)	$S_0 \rightarrow S_2$	MLCT	2,84	436,3	0,1384	
402 (0,84)	$S_0 \rightarrow S_3$	IL/MLCT	3,03	408,3	0,0426	
	$S_0 \rightarrow S_4$	MLCT	3,10	399,8	0,0022	
		6B				
	$S_0 \rightarrow S_1$	ILCT/IL/MLCT	2,55	486,1	0,1188	
	$S_0 \rightarrow S_2$	ILCT/IL/MLCT	2,64	469,4	0,0924	
413 (1,52)	$S_0 \rightarrow S_3$	MLCT	2,87	430,9	0,0517	
	$S_0 \rightarrow S_4$	MLCT	3,11	399,2	0,0033	
	$S_0 \rightarrow S_5$	ILCT/IL	3,21	385,6	0,3187	

Rysunek 100. Wyniki obliczeń przejść elektronowych najniżej energetycznego pasma absorpcyjnego.

Dla związków 1A, 2A i 5A oraz ich odpowiedników z pochodnymi *dppy* dominującym (o największej sile oscylatora) przejściem w obszarze najniżej energetycznego pasma UV-Vis jest $S_0 \rightarrow S_2$, odpowiadające przeniesieniu ładunku z {Re(CO)₃Cl} na orbitale π^* liganda organicznego, a więc o charakterze MLCT. Również przejściom elektronowym o zdecydowanie niższej sile oscylatora, $S_0 \rightarrow S_1$ i $S_0 \rightarrow S_3$ w związkach 2A i 2B oraz $S_0 \rightarrow S_1$ i $S_0 \rightarrow S_4$ w związkach 1A, 5A, 1B i 5B, które pojawiają się w długo- lub krótkofalowej części najniżej energetycznego pasma UV-Vis przypisać można charakter przejścia MLCT. Jedynie przejścia $S_0 \rightarrow S_4$ w związkach 2A i 2B a w związkach 1A, 5A, 1B i 5B $S_0 \rightarrow S_3$ mają głównie charakter przejść w obrębie liganda (IL), ale ich wkład ze względu na siłę oscylatora jest pomijalny (Tabela 59 i Rysunek 100).

W przypadku związków renu(I) z podstawnikami antracenowymi i pirenowym, zgodnie z obliczeniami teoretycznymi, za właściwości absorpcyjne reprezentowane przez najniżej energetyczne pasmo w widmie UV-Vis odpowiadają zarówno przejścia o charakterze MLCT $(S_0 \rightarrow S_2, S_0 \rightarrow S_3 \ i \ S_0 \rightarrow S_6$ dla związku **3A**, $S_0 \rightarrow S_2$, $S_0 \rightarrow S_3 \ i \ S_0 \rightarrow S_5$ dla związku **4A** i $S_0 \rightarrow S_2$, $S_0 \rightarrow S_3 \ i \ S_0 \rightarrow S_4$ dla związku **6A**) oraz $\pi_{aryl} \rightarrow \pi^*_{aryl}/\pi^*_{terpy}$ (IL/ILCT: $S_0 \rightarrow S_1$, $S_0 \rightarrow S_4 \ i \ S_0 \rightarrow S_5$ dla związku **3A**, $S_0 \rightarrow S_1$, $S_0 \rightarrow S_4 \ i \ S_0 \rightarrow S_6$ dla związku **4A** i $S_0 \rightarrow S_5$ dla związku **6A**). Biorąc pod uwagę siły oscylatora te drugie wydają się dominować, w szczególności w przypadku związków **4A**, **6A** i **6B**. Eksperymentalnie "objawia" się to wzrostem intensywności najniżej energetycznego pasma.

Energię przejścia emisyjnego (fosforescencji) dla otrzymanych związków renu(I) wyznaczono w metodzie DFT licząc różnicę energii pomiędzy stanem T₁ a stanem podstawowym S₀. Wyniki tych obliczeń zestawiono w Tabeli 60. Dla związków z podstawnikami naftylowymi i fenantrenowym wyznaczone teoretyczne długości fali emisji bardzo dobrze korelują z danymi eksperymentalnymi. Gęstość spinowa dla związków **1A**, **2A**, **5A** oraz **1B**, **2B** i **5B** zlokalizowana jest na fragmencie {Re(CO)₃Cl} oraz orbitalach π^* skoordynowanych pierścieni rdzenia, co potwierdza, że emisja następuje ze stanu ³MLCT.

Dla związków **3A**, **4A**, **6A** i **6B** obliczenia teoretyczne pokazują, że gęstość spinowa zlokalizowana na podstawniku arylowym oraz centralnym pierścieniu liganda *Ar-terpy* lub *Ar-dppy*. Potwierdza to wyniki eksperymentalne wskazujące,że najniższy stan wzbudzony tych układów ma charakter ³IL/³ILCT. Obliczone długości fali emisji dla **3A** i **4A** odpowiadają najniżej energetycznie położonemu maksimum ustrukturyzowanego pasma emisji antracenu [70].

178

Związek	Obliczenia λ [nm]/E [eV]	Eksperyment λ [nm]/E [eV]	Gęstość spinowa	Obliczenia λ [nm]/E [eV]	Eksperyment λ [nm]/E [eV]	Gęstość spinowa
		Α			В	
1A/1B	686 (1,80)	654 (1,89)	A A A A A A A A A A A A A A A A A A A	855 (1,45)	750 (1,65)	
2A/2B	697 (1,77)	663 (1,87)		843 (1,47)	735 (1,69)	
3A	905 (1,37)	627 (1,98)		_	_	_
4A	886 (1,40)	609 (2,04)	A CONTRACTOR	_	_	_
5A/5B	687 (1,80)	641 (1,93)		861 (1,44)	737 (1,68)	
6A/6B	783 (1,58)	620 (1,99)		795 (1,56)	708 (1,75)	the second

 Tabela 60. Wartości maksimum emisji wyznaczone eksperymentalnie i teoretycznie dla związków koordynacyjnych i kontury ich gęstości spinowych.

11. Podsumowanie i najważniejsze osiągnięcia

W niniejszej rozprawie doktorskiej przeprowadziłam szczegółowe badania strukturalne, termiczne, elektrochemiczne i spektroskopowe dla arylowych pochodnych 2,2':6',2"-terpirydyny (Ar-terpy) oraz 2,6-di(pirazyn-2-ylo)pirydyny (Ar-dppy), które w następnym kroku zastosowałam do syntezy związków koordynacyjnych renu(I) o wzorach ogólnych [ReCl(CO)₃(Ar-terpy- $\kappa^2 N$)] i [ReCl(CO)₃(Ar-dppy- $\kappa^2 N$)]. Zastosowane arylowe podstawniki to: 1-naftalenowy, 2-naftalenowy, 9-antracenowy, 2-antracenowy, 9-fenantrenowy i 1-pirenowy, które zostały wprowadzone w pozycję 4' liganda terpy i pozycję 4 liganda dppy. Wykorzystywane ligandy różniły się budową rdzenia (terpy lub dppy) oraz rodzajem podstawnika arylowego modyfikującego rdzeń *terpy* i *dppy*. Różnice pomiedzy zastosowanymi podstawnikami dotyczyły ilości skondensowanych pierścieni aromatycznych oraz sposobu przyłączenia podstawnika do rdzienia triiminowego, a więc jego ułożenienia przestrzennego względem płaszczyzny rdzenia. Różny sposób przyłączenia tego samego podstawnika pozwalał na zaobserwowanie różnic we właściwościach związków zmodyfikowanych izomerycznymi odmianami tego samego aryla (np. 1-naftalenu i 2-naftalenu) w efekcie różnic w nakładaniu orbitali pomiędzy rdzeniem a podstawnikiem, a więc różnic w efektywności przekazywania gęstości elektronowej pomiędzy dwoma chromoforami organicznymi. Takie dwa sposoby modyfikacji ligandów dały możliwość określenia wpływu zarówno podstawnika jak i rdzenia samego liganda na właściwości związków koordynacyjnych renu(I). Związki koordynacyjne renu(I) zostały zaprojektowane w oparciu o podejście bichromoforowe, zgodnie z którym obecność dwóch blisko leżących stanów trypletowych ³MLCT i ³IL daje możliwość ustalenia się pomiędzy nimi stanu równowagi i uzyskania dzięki temu związków charakteryzujących się wydłużonymi czasami życia luminescencji w temperaturze pokojowej. W wyniku przeprowadzonych badań otrzymałam 10 nowych związków koordynacyjnych renu(I), w tym 6 połączeń z ligandami będącymi pochodnymi 2,2':6',2"-terpirydyny oraz 4 będące pochodnymi 2,6-di(pirazyn-2-ylo)pirydyny.

Strukturę molekularną otrzymanych związków potwierdziłam z wykorzystaniem technik spektroskopowych: NMR, IR, spektrometrii mas oraz analizy elementarnej, a dla związku koordynacyjnego 1A oraz dwóch ligandów L^{1A} i L^{1B} również za pomocą rentgenowskiej analizy strukturalnej. Cząsteczki ligandów wykazywały nieplanarną budowę przestrzenną w efekcie zawady sterycznej pomiędzy atomami pierścieni podstawnika i centralnej pirydyny. Wartość kąta dwuściennego pomiędzy płaszczyzną podstawnika a płaszczyzną pierścienia centralnej pirydyny w tych układach uwarunkowana jest głównie rodzajem podstawnika aromatycznego.

180
Cząsteczki związków Re(I) wykazywały geometrię odkształconego oktaedru i charakteryzowały się bidentnym sposobem koordynacji liganda *Ar-terpy* oraz facjalną geometrią ugrupowania [Re(CO)₃]⁺.

Uzyskane związki renu(I) zostały poddane szczegółowym badaniom optycznym i elektrochemicznym przy wykorzystaniu spektroskopii absorpcyjnej, emisyjnej oraz spektroskopii absorpcji przejściowej, a także woltamperometrii cyklicznej i pulsowej woltamperometrii różnicowej, dzięki którym scharakteryzowałam podstawowe i wzbudzone stany elektronowe badanych związków koordynacyjnych. Uzupełnieniem szerokich badań strukturalnych, termicznych, elektrochmicznych i spektroskopowych były obliczenia kwantowochemiczne z zastosowaniem metody DFT i TD-DFT, które obejmowały optymalizację geometrii stanów podstawowego i wzbudzonego, opis orbitali molekularnych oraz wyznaczenie powinowactwa elektronowego, potencjału jonizacji i przerwy energetycznej, a także maksimum pasma emisji. Obliczenia skorelowane z wynikami badań doświadczalnych pozwoliły na lepsze poznanie natury stanów związanych z procesem absorpcji oraz emisji promieniowania.

Zgodnie z przeprowadzonymi pomiarami elektrochemicznymi proces redukcji we wszystkich związkach zachodził na szkielecie triiminowym, a zamiana rdzenia z terpy na dppy prowadziła do wzrostu wartości pików redukcji, a więc ułatwiała redukcję związków opartych na rdzeniu dppy w porówananiu z tymi opartymi na rdzeniu terpy. Charakter procesu utlenienia w związkach renu(I) zależny był od rodzaju podstawnika modyfikującego rdzeń liganda. Dla związków renu(I) z podstawnikami naftylowymi i fenantrenowym proces utleniania zachodził na centrum metalicznym (Re(I)/Re(II)). Natomiast dla związków z podstawnikami antracenowymi i pirenowym nie było możliwym jednoznaczne przypisanie procesu utlenienia. Wartości E_{utl}^{onset} tych związków były zbliżone zarówno do wartości E_{utl}^{onset} dla wolnych ligandów, jak również do wartości E_{utl}^{onset} związków renu(I) z podstawnikami naftylowymi i fenantrenowym. Co jednak istotne, wszystkie otrzymane związki renu(I) charakteryzowały się małymi przerwami energetycznymi, a poziomy ich orbitali granicznych są dobrze dopasowane do pracy wyjścia składników diod elektroluminescencyjnych, co czyni omawiane związki atrakcyjnymi kandydatami do zastosowań w technologii urządzeń OLED.

Opierając się na wynikach elektronowej spektroskopii absorpcyjnej i emisyjnej oraz spektroskopii absorpcji przejściowej wykazałam, że najniższy stan singletowy w związkach renu(I) z podstawnikami naftylowymi i fenantrenowym ma charakter ¹MLCT, a emisja następuje ze stanu ³MLCT. W procesie przejścia międzysystemowego (ISC) stan ¹MLCT ulega konwersji do stanu ³MLCT, a enegia stanu ³IL_{aryl} jest zdecydowanie wyższa od energii poziomu ³MLCT.

181

Zaproponowany model dobrze koreluje z rezultatami opisanymi w literaturze dla [ReCl(CO)₃(terpy-κ²N)] i [ReCl(CO)₃(bipy)].

Wprowadzenie podstawników antracenowych oraz pirenowego spowodowało zmianę charakteru pierwszego wzbudzonego stanu singletowego z MLCT na mieszany MLCT/IL/ILCT. Nastąpiła też zmiana w sekwencji procesów fotofizycznych zachodzących po akcie absorpcji fotonu przez cząsteczki tych związków. Związek [ReCl(CO)₃(Ar-terpy-κ²N)] z podstawnikiem pirenowym okazał się być przykładem związku z transferem energii typu "ping-pong". W efekcie absorpcji promieniowania cząsteczki tego związku wzbudzone zostają głównie do ¹IL_{piren}/¹ILCT_{piren→terpy}, po czym następuje transfer energii ze stanu stanu ¹IL_{piren}/¹ILCT_{piren→terpy} do stanu ¹MLCT według mechanizmu FRET. ¹MLCT ulega konwersji do stanu ³MLCT, po czym nastepuje przeniesienie energii ze stanu ³MLCT do niżej leżącego ³IL/ILCT. Pomiędzy stanami ³MLCT i ³IL/ILCT ustala się stan równowagi, w efekcie czego związki renu(I) z podstawnikiem pirenowym charakteryzują się długimi czasami życia w temperaturze pokojowej, o 2-3 rzędy wielkości większe niż te dla 1A, 2A i 5A oraz 1B, 2B i **5B**.

W przypadku związków renu(I) z podstawnikami antracenowymi najniżej energetyczny stan trypletowy został zlokalizowny na podstawniku antracenowym, a pomiędzy stanami ³MLCT i ³IL_{An} nie potwierdziłam ustalenia się stanu równowagi. Wykazałam też róźnice pomiędzy związkami renu(I) z podstawnikiem 9-antracenowym (**3A**) i 2-antracenowym (**4A**). Bardziej planarna geometria liganda z podstawnikiem 2-antracenowym przyspiesza tworzenie się stanu ³An oraz odpowiada za zdecydowanie większy udział stanu ³ILCT w przypadku związku **4A**. Związki z podstawnikami antracenowymi okazały się być niezwykle interesujące. Ich właściwości fotoluminescencyjne silnie zależały od polarności środowiska, jak i długości fali wzbudzenia. Dla obydwu związków **3A** i **4A** w temperaturze pokojowej w DMSO w wyniku wzbudzenia $\lambda_{exc} > 410$ nm zaobserwowane zostały dwa pasma emisji, zarówno ze stanu ³MLCT jak i ze stanu ³An. Fosforescencja ze stanu wzbudzonego zlokalizowanego na antracenie jest bardzo rzadko obserwowana w widmach emisji związków w temperaturze pokojowej, ale co szczególnie istotne cechuje się długimi czasami życia. Obydwa związki **3A** i **4A** wykazywały zdolność do generowania tlenu singletowego.

Otrzymane związki renu(I) zostały poddane także wstępnej ocenie w kontekście ich potencjalnego zastosowanie jako warstwy emsyjne w diodach OLED. Najbardziej interesujące wyniki uzyskano dla związków renu(I) z podstawnikami antracenowymi. Widmo elektroluminescencyjne urządzeń zawierających związki **3A** i **4A** obejmowało kilka pasm. Dodatek składnika emitującego światło niebieskie z zakresu 400–500 nm mógłby skutkować

powstaniem diody emitującej światło białe. Generalnie jednak badane związki wykazywały słabą emisję, dopiero po przyłożeniu wysokiego napięcia.

Przedstawione w rozprawie rezultaty dotyczące wpływu podstawników arylowych w liganadach *terpy* i *dppy* na właściwości fizyko-chemiczne związków koordynacyjnych renu(I) mają istotne znaczenie dla dalszego projektowania nowych związków o określonych właściwościach w kontekście ich potencjalnych zastosowań.

Za najważniejsze osiągnięcia niniejszej rozprawy doktorskiej uważam:

- uzyskanie związków koordynacyjnych renu(I) charakteryzujących się wydłużonym czasem życia luminescencji w temperaturze pokojowej w wyniku ustalenia równowagi pomiędzy wzbudzonymi trypletowymi stanami ³MLCT i ³IL;
- otrzymanie związków wykazujących w temperaturze pokojowej fosforescencję ze stanu trypletowego zlokalizowanego na podstawniku antracenowym;
- wyznaczanie ścieżki dezaktywacji stanu wzbudzonego i podanie uproszczonych diagramów poziomów energetycznych dla wybranych związków;
- uzyskanie związków wykazujących zdolność do generowania tlenu singletowego;
- wyznaczenie zależności pomiędzy budową liganda a właściwościami termicznymi, strukturalnymi, elektrochemicznymi a także optycznymi uzyskanego związku koordynacyjnego, które są istotnymi wskazówkami do dalszego projektowania związków o ulepszonych właściwościch.

12. Literatura

- 1. G.T. Morgan, F.H. Burstall, J. Chem. Soc., 1932, 20-30.
- 2. F.H. Burstall, J. Chem. Soc., 1938, 1662-1672.
- 3. T. Kauffmann, J. König, A. Woltermann, Chem. Ber., 1976, 109, 3864–3868.
- 4. J. Uenishi, T. Tanaka, S. Wakabayashi, S. Oae, H. Tsukube, Tetrahedron Lett., 1990, 31, 4625–4628.
- 5. Y. Yamamoto, T. Tanaka, M. Yagi, M. Inamoto, *Heterocycles*, 1996, 42,189-194.
- 6. Y.-Q. Fang, G.S. Hanan, Synlett, 2003, 2003, 0852-0854.
- 7. G.D. Harzmann, M. Neuburger, M. Mayor, Eur. J. Inorg. Chem., 2013, 2013, 3334-3347.
- 8. S. Aroua, T.K. Todorova, P. Hommes, L.-M. Chamoreau, H.-U. Reissig, V. Mougel, M. Fontecave, *Inorg. Chem.*, 2017, 56, 5930–5940.
- 9. K.T. Potts, M.J. Cipullo, P. Ralli, G. Theodoridis, J. Am. Chem. Soc., 1981, 103, 3585–3586.
- 10. G. W. V. Cave, C. L. Raston, J. L. Scott, Chem. Commun., 2001, 2159–2169.
- 11. G. W. V. Cave, C. L. Raston, J. Chem. Soc., Perkin Trans. 1, 2001, 3258-3264.
- 12. S. Tu, R. Jia, B. Jiang, J. Zhang, Y. Zhang, C. Yao, S. Ji, *Tetrahedron*, 2007, 63, 381–388.
- 13. F. Kröhnke, Synthesis, 1976, 1976, 1–24.
- 14. K. T. Potts, D. A. Usifer, A. Guadalupe, H. D. Abruna, J. Am. Chem. Soc., 1987, 109, 3961–3967.
- 15. C. G. Bochet, C. Piguet, A. F. Williams, Helv. Chim. Acta, 1993, 76, 372-384.
- 16. A. K. Patel, N. H. Patel, M. A. Patel, D. I. Brahmbhatt, *ARKIVOC*, 2010,11, 28-38.
- 17. R. Karki, C. Park, K.-Y. Jun, T. M. Kadayat, E.-S. Lee, Y. Kwon, Eur. J. Med. Chem., 2015, 90, 360-378.
- 18. M. Adib, H. Tahermansouri, S. A. Koloogani, B. Mohammadia, H. R. Bijanzadeh, *Tetrahedron Lett.*, 2006, 47, 5957–5960.
- 19. K. Gopalaiah, R. Choudhary, *Tetrahedron*, 2021, 98, 132429.
- 20. E.C. Constable, M.D. Ward, S. Corr, Inorg. Chim. Acta, 1988, 141, 201–203.
- 21. H. Elsbernd, J. K. Beattie, J. Inorg. Nucl. Chem., 1972, 34, 771-774.
- 22. F. E. Lytle, L. M. Petrosky, L. R. Carlson, Anal. Chim. Acta, 1971, 57, 239-247.
- 23. E. C. Constable, J. Chem. Soc., Dalton Trans., 1985, 2687-2689.
- 24. P. E. Fielding, R. J. W. Le Fevre, J. Chem. Soc., 1951, 1811-1814.
- 25. R. P. Thummel, Y. Jahng, J. Org. Chem., 1985, 50, 2407-2412.
- 26. K. Nakamoto, J. Phys. Chem., 1960, 64, 1420-1425.

27. C. A. Bessel, R. F. See, D. L. Jameson, M. R. Churchill, K. J. Takeuchi, J. Chem. Soc., Dalton Trans., 1992, 3223-3228.

28. K. F. Bowes, I. P. Clark, J. M. Cole, M. Gourlay, A. M. E. Griffifin, M. F. Mahon, L. Ooi, A. W. Parker, P. R. Raithby, H. A. Sparkes, M. Towrie, *CrystEngComm.*, 2005, 7, 269–275.

- **29.** T. Yoshimura, K. Umakoshi, Y. Sasaki, *Inorg. Chem.* 2003, 42, 7106–7115.
- 30. K. Peng, A. Friedrich, U. Schatzschneider, Chem. Commun., 2019, 55, 8142-8145.

31. A. Doppiu, G. Minghetti, M. A. Cinellu, S. Stoccoro, A. Zucca, M. Manassero, *Organometallics*, 2001, 20, 1148–1152.

- **32.** S. Yu, Y. Dudkina, H. Wang, K. V. Kholin, M. K. Kadirov, Y. H. Budnikova, D. A. Vicic, *Dalton Trans.*, 2015, 44, 19443-19446.
- 33. M. Al-Anber, B. Walfort, S.Vatsadze, H. Lang, Inorg. Chem. Commun., 2004, 7, 799-802.

34. M. Gil-Moles, M. C. Gimeno, J. M. López-de-Luzuriaga, M. Monge, M. E. Olmos, D. Pascual, *Inorg. Chem.*, 2017, 56, 9281–9290.

35. M. P. Coogan, V. Fernµndez-Moreira, B. M. Kariuki, S. J. A. Pope, F. L. Thorp-Greenwood, Angew. Chem. Int. Ed., 2009, 48, 4965 – 4968.

- 36. G. T. Morgan, F. H. Burstall, J. Chem. Soc., 1932, 20-30.
- 37. A. Juris, S. Campagna, I. Bidd, J.-M. Lehn, R. Ziessel, Inorg. Chem., 1988, 27, 4007-4011.
- 38. P. Bulsink, A. Al-Ghamdi, P. Joshi, I. Korobkov, T. Woo, D. Richeson, Dalton Trans., 2016, 45, 8885-8896.
- 39. D. R. Black, S. E. Hightower, Inorg. Chem. Commun., 2012, 24, 16-19.

40. E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Sik, M. B. Hursthouse, M. A. Mazid, J. Chem. Soc., Dalton Trans., 1993, 597-603.

41. P. A Anderson, F. R. Keene, E. Horn, E. R T Tiekink, Appl. Organomet. Chem., 1990, 4, 523-533.

42. E. R. Civitello, P. S. Dragovich, T. B. Karpishin, S. G. Novick, G. Bierach, J. F. O'Connell, T. D. Westmoreland, *Inorg. Chem.*, 1993, 32, 237-241.

43. B. A. Frenzel, J. E. Schumaker, D. R. Black, S. E. Hightower, *Dalton Trans.*, 2013, 42, 12440–12451.

44. A. J. Amoroso, A. Banu, M. P. Coogan, P. G. Edwards, G. Hossain, K. M. A. Malik, *Dalton Trans.*, 2010, 39, 6993–7003.

45. A. M. Maroń, A. Szlapa-Kula, M. Matussek, R. Kruszynski, M. Siwy, H. Janeczek, J. Grzelak, S. Maćkowski, E. Schab-Balcerzak, B, Machura, *Dalton Trans.*, 2020, 49, 4441–4453.

46. R. J. Fernandez-Teran, L. Severy, Inorg. Chem., 2021, 60, 1325-1333.

47. S. Frantz, J. Fiedler, I. Hartenbach, T. Schleid, W. Kaim, J. Organomet. Chem., 2004, 689, 3031-3039.

48. F. Paolucci, M. Marcaccio, C. Paradisi, S. Roffifia, C. A. Bignozzi, C. Amatore, J. Phys. Chem. B, 1998, 102, 4759-4769.

49. D. Wang, Q.-L. Xu, S. Zhang, H.-Y. Li, C.-C. Wang, T -Y Li, Y.-M. Jing, W. Huang, Y.-X. Zheng, G. Accorsi, *Dalton Trans.*, 2013, 42, 2716–2723.

50. A. El Nahhas, A. Cannizzo, F. van Mourik, A. M. Blanco-Rodriguez, S. Záliš, A. Vlček, Jr., M. Chergui, *J. Phys. Chem. A*, 2010, 114, 6361–6369.

51. K. Choroba, S. Kotowicz, A. Maroń, A. Świtlicka, A. Szłapa-Kula, M. Siwy, J. Grzelak, K. Sulowska, S. Maćkowski, E. Schab-Balcerzak, B. Machura, *Dyes Pigm.*, 2021, 192, 109472.

52. M. Wrighton, D. L. Morse, J. Am. Chem. Soc., 1974, 96, 998–1003.

53. D. J. Stufkens, A. Vlček, Coord. Chem. Rev., 1998, 177, 127-179.

54. D. R.Striplin, G. A. Crosby, Coord. Chem. Rev., 2001, 211, 163-175.

55. C.-C. Ko, A. W.-Y. Cheung, L. T.-L. Lo, J. W.-K. Siu, C.- O. Ng, S.-M. Yiu, *Coord. Chem. Rev.*, 2012, 256, 1546–1555.

56. C. Wei, Y. He, X. Shi, Z. Song, Coord. Chem. Rev., 2019, 385, 1-19.

57. S.-Y. Jiao, K. Li, W. Zhang, Y.-H. Liu, Z. Huang, X.-Q. Yu, Dalton Trans., 2015, 44, 1358–1365.

58. X. Tian, Q. Zhang, M. Zhang, K. Uvdal, Q. Wang, J. Chen, W. Du, B. Huang, J. Wua, Y. Tian, *Chem. Sci.*, 2017, 8, 142–149.

59. M. Kaplanis , G. Stamatakis, V. D. Papakonstantinou, M, Paravatou-Petsotas, C. A. Demopoulos , C. A. Mitsopoulou, *J. Inorg. Biochem.*, 2014, 135, 1–9.

60. E. B. Bauer, A. A. Haase, R, M. Reich, D, C. Crans, F, E. Kühn Coord. Chem. Rev., 2019, 393, 79-117.

61. R. Lakshmanan, N. C. Shivaprakash, S. Sindhu, J. Fluoresc., 2018, 28, 173–182.

62. A. Heppa, G. Ulrich, R. Schmechela, H. von Seggerna, R. Ziessel, Synth. Met., 2004, 146, 11-15.

63. V. Fernandez-Moreira, F. L. Thorp-Greenwood, R. J. Arthur, B. M. Kariuki, R. L. Jenkins, M. P. Coogan, *Dalton Trans.*, 2010, 39, 7493–7503.

64. T. Klemens, A. Świtlicka, A. Szlapa-Kula, S. Krompiec, P. Lodowski, A. Chrobok, M. Godlewska, S. Kotowicz, M. Siwy, K. Bednarczyk, M, Libera, S. Maćkowski, T. Pędziński, E. Schab-Balcerzak, B. Machura, *Appl. Organometal. Chem.*, 2018, 32, e4611.

65. T. Klemens, A. Świtlicka-Olszewska, B. Machura, M. Grucela, E. Schab-Balcerzak, K. Smolarek, S. Mackowski, A. Szlapa, S. Kula, S. Krompiec, P. Lodowski, A. Chrobok, *Dalton Trans.*, 2016, 45, 1746–1762.

66. T. Klemens, A. Świtlicka-Olszewska, B. Machura, M. Grucela, H. Janeczek, E. Schab-Balcerzak, A. Szlapa, S. Kula, S. Krompiec, K. Smolarek, D. Kowalska, S. Mackowski, K. Erfurtf, P. Lodowski, *RSC Adv.*, 2016, 6, 56335–56352.

67. L. Suntrup, S. Klenk, J. Klein, S. Sobottka, B. Sarkar, Inorg. Chem., 2017, 56, 5771–5783.

68. J. G. Małecki "Chemia koordynacyjna. Podstawy", Wydawnictwo Uniwersytetu Śląskiego, Katowice 2016.

69. T. Klemens, A. Świtlicka, S. Kula, M. Siwy, K. Łaba, J. Grzelak, M. Szalkowski, S. Maćkowski, E. Schab-Balcerzaka, B. Machura, *J. Lumin.*, 2019, 209, 346–356.

70. T. Klemens, A. Świtlicka, A. Szlapa-Kula, Ł. Łapok, M. Obłoza, M. Siwy, M. Szalkowski, S. Mackowski, M. Libera, E. Schab-Balcerzak, B. Machura, *Organometallics*, 2019, 38, 4206–4223.

71. T. Klemens, A. Świtlicka, B. Machura, S. Kula, S. Krompiec, K, Łaba, M. Korzec, M. Siwy, H. Janeczek, E. Schab-Balcerzak, M. Szalkowski, J. Grzelak, S. Maćkowski, *Dyes Pigm.*, 2019, 163, 86–101.

72. T. Auvray, B. Del Secco, A. Dubreuil, N. Zaccheroni, G. S. Hanan, Inorg. Chem., 2021, 60, 1, 70–79.

73. P. Bujak, I. Kulszewicz-Bajer, M. Zagorska, V. Maurel, I. Wielgus, A. Pron, Chem. Soc. Rev., 2013, 42, 8895-8999.

74. K. Choroba, A. Maroń, A. Świtlicka, A. Szłapa-Kula, M. Siwy, J. Grzelak, S. Maćkowski, T. Pedzinski, E. Schab-Balcerzak, B. Machura, *Dalton Trans.*, 2021, 50, 3943–3958.

75. T. Klemens, K. Czerwińska, A. Szlapa-Kula, S. Kula, A. Świtlicka, S. Kotowicz, M. Siwy, K. Bednarczyk, S. Krompiec, K. Smolarek, S. Maćkowski, W. Danikiewicz, E. Schab-Balcerzak, B. Machura, *Dalton Trans.*, 2017, 46, 9605–9620.

76. R. Fernández-Terán, L. Sévery, Inorg. Chem., 2021, 60, 1334-1343.

77. K. S. Kisel, T. Eskelinen, W. Zafar, A. I. Solomatina, P. Hirva, E. V. Grachova, S. P. Tunik, I. O. Koshevoy, *Inorg. Chem.*, 2018, 57, 6349–6361.

78. C. Garino, T. Ruiu, L. Salassa, A. Albertino, G. Volpi, C. Nervi, R. Gobetto i K. I. Hardcastle, *Eur. J. Inorg. Chem.*, 2008, 2008, 3587–3591.

79. J. E. Yarnell, J. C. Deaton, C. E. McCusker, F. N. Castellano, Inorg. Chem., 2011, 50, 7820–780.

80. T. M. McLean, J. L. Moody, M. R. Waterland, S. G. Telfer, Inorg. Chem., 2012, 51, 446–455.

81. W. E. Ford, M. A. J. Rodgers, J. Phys. Chem., 1992, 96, 2917-2920.

82. J. Wang, G. S. Hanan, F. Loiseau, S.o Campagna, Chem. Commun., 2004, 2068–2069.

83. J. A. Simon, S. L. Curry, R. H. Schmehl, T. R. Schatz, P. Piotrowiak, X. Jin, R. P. Thummel, *J. Am. Chem. Soc.*, 1997, 119, 11012-11022.

84. D. S. Tyson, K. B. Henbest, J. Bialecki, F. N. Castellano, J. Phys. Chem. A, 2001, 105, 8154-8161.

85. S. Ji, W. Wu, W. Wu, P. Song, K. Han, Z. Wang, S. Liu, H. Guod, J. Zhao, J. Mater. Chem., 2010, 20, 1953–1963.

86. J. Wang, Y.-Q. Fang, L. Bourget-Merle, M. I. J. Polson, G. S. Hanan, A. Juris, F. Loiseau, S. Campagna, *Chem. Eur. J.*, 2006, 12, 8539 – 8548.

87. G. Albano, V. Balzani, E. C. Constable, M. Maestri, D. R.Smith, Inorganica Chim. Acta, 1998, 277, 225-231.

88. J. R. Winkler, T. L. Netzel, C. Creutz, N. Sutin, J. Am. Chem. Soc., 1987, 109, 2381-2392.

89. G. Ragazzon, P. Verwilst, S. A. Denisov, A. Credi, G. Jonusauskasc, N. D. McClenaghan, *Chem. Commun.*, 2013, 49, 9110-9112.

90. R. Lincoln, L. Kohler, S. Monro, H. Yin, M. Stephenson, R. Zong, A. Chouai, C. Dorsey, R. Hennigar, R. P. Thummel, S. A. McFarland, J. Am. Chem. Soc., 2013, 135, 17161–17175.

91. M. T. Indelli, M. Ghirotti, A. Prodi, C. Chiorboli, F. Scandola, N. D. McClenaghan, F. Puntoriero, S. Campagna, *Inorg. Chem.*, 2003, 42, 5489–5497.

92. J. E. Yarnell, J. C. Deaton, C. E. McCusker, F. N. Castellano, Inorg. Chem., 2011, 50, 7820-7830.

93. J. E. Yarnell, K. A. Wells, J. R. Palmer, J. M. Breaux, F. N. Castellano, J. Phys. Chem. B, 2019, 123, 7611-7627.

94. K. A. Wells, J. E. Yarnell, J. R. Palmer, T. S. Lee, C. M. Papa, F. N. Castellano, *Inorg. Chem.*, 2020, 59, 8259–8271.

95. D. Göbel, N. Clamor, E. Lork, B. J. Nachtsheim, Org. Lett., 2019, 21, 5373-5377.

96. CrysAlisRED, Oxford Diffraction Ltd., Abingdon, 2014.

97. G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3-8.

98. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A, Jr Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox. *Gaussian 16, Revision C.01*, Gaussian, Inc., Wallingford CT, 2016.

99. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158-69.

100. M.Ernzerhof, G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029-506.

101. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.

102. D. Rappoport, F. Furche, J. Chem. Phys., 2010, 133, 134105.

103. E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041.

- 104. B. Mennucci, J. Tomasi, J. Chem. Phys., 1997, 106, 5151-5158.
- 105. M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett., 1998, 286, 253-260.

106. I. Eryazici, G. R. Newkome, New. J. Chem., 2009, 33, 345–357.

107. J. E. Beves, E. C. Constable, C. E. Housecroft, M. Neuburger, S. Schaffner, Polyhedron, 2008, 27, 2395–2401.

108. F. Emmerling, J. L. Bricks, U. Resch-Genger, W. Kraus, B. Schulz, Y. Q. Li, G. Reck, *J. Mol. Struct.*, 2008, 874, 14–27.

109. C. Bhaumik, S. Das, D. Maity, S. Baitalik, Dalton Trans., 2011, 40, 11795-11808.

110. A. Maroń, A. Szlapa, T. Klemens, S. Kula, B. Machura, S. Krompiec, J. G. Małecki, A. Świtlicka-Olszewska,

K. Erfurt, A. Chrobok, Org. Biomol. Chem., 2016, 14, 3793-3808.

111. J. Palion-Gazda, B. Machura, T. Klemens, A. Szlapa-Kula, S. Krompiec, M. Siwy, H. Janeczek, E. Schab-Balcerzak, J. Grzelak, S. Maćkowski, *Dyes Pigm.*, 2019, 166, 283–300.

112. S. Fukuzumi, K. Ohkubo, H. Imahori, D. M. Guldi, Chem. Eur. J., 2003, 9, 1585-1593.

113. E. Lippert, Z. Electrochem., 1957, 61, 962–975.

114. N. Mataga, Y. Kaifu, M. Koizumi, Bull. Chem. Soc. Jpn., 1956, 29, 465-470.

115. S. P. McGlynn, M. J. Reynolds, G. W. Daigre, N. D. Christodoyleas, J. Phys. Chem., 1962, 66, 12, 2499–2505.

116. Y.-J. Liu, K.-Z. Wang, Eur. J. Inorg. Chem., 2008, 2008, 5214–5219.

117. C. Garino, S. Ghiani, R. Gobetto, C. Nervi, L. Salassa, G. Croce, M. Milanesio, E. Rosenberg, J. B. A. Ross, *Eur. J. Inorg. Chem.*, 2006, 2006, 2885–2893.

118. P. Natarajan, M. Schmittel, Inorg. Chem., 2013, 52, 8579-8590.

119. A. Szlapa-Kula, M. Małecka, B. Machura, Dyes Pigm., 2020, 180, 108480.

120. K. Choroba, S. Kula, A. Maroń, B. Machura, J. Małecki, A. Szłapa-Kula, M. Siwy, J. Grzelak, S. Maćkowski, E. Schab-Balcerzak, *Dyes Pigm.*, 2019, 169, 89–104.

121. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4-6.

122. D. S. Tyson, C. R. Luman, X. Zhou, F. N. Castellano, Inorg. Chem., 2001, 40, 4063-4071.

123. J. E. Yarnell, C. E. McCusker, A. J. Leeds, J. M. Breaux, F. N. Castellano, *Eur. J. Inorg. Chem.*, 2016, 2016, 1808–1818.

124. J. E. Yarnell, A. Chakraborty, M. Myahkostupov, K. M. Wright, F. N. Castellano, *Dalton Trans.*, 2018, 47, 15071–15081.

125. M. E. Walther, O. S. Wenger, Dalton Trans., 2008, 44, 6311-6318.

126. N. P. Liyanage, W. Yang, S. Guertin, S. S. Roy, C. A. Carpenter, R. E. Adams, R. H. Schmehl, J. H. Delcamp, J. W. Jurss, *Chem. Commun.*, 2019, 55, 993–996.

127. Q. Li, H. Guo, L. Ma, W. Wu, Y. Liu, J. Zhao, J. Mater. Chem., 2012, 22, 5319-5329.

128. L. J. G. W. van Wilderen, C. N. Lincoln, J. J. van Thor, PLoS One, 2011, 6, e17373.

129. C. Slavov, H. Hartmann, J. Wachtveitl, Anal. Chem., 2015, 87, 2328-2336.

130. A. Cannizzo, A. M. Blanco-Rodríguez, A. El Nahhas, J. Ŝebera, S. Zális, A. Jr. Vlček, M. Chergui, J. Am. Chem. Soc., 2008, 130, 8967–8974.

131. A. El Nahhas, C. Consani, A. M. Blanco-Rodríguez, K. M. Lancaster, O. Braem, A. Cannizzo, M. Towrie, I. P. Clark, S. Zális, M. Chergui, A. Jr. Vlček, *Inorg. Chem.*, 2011, 50, 2932–2943.

132. N. D. McClenaghan, Y. Leydet, B. Maubert, M. T. Indelli, S. Campagna, *Coord. Chem. Rev.*, 2005, 249, 1336–1350.

133. R. E. Aderne, B. G. A. L. Borges, H. C. Ávila, F. von Kieseritzky, J. Hellberg, M. Koehler, M. Cremona, L. S. Roman, C. M. Araujo, M. L. M Rocco, C. F. N. Marchiori, *Mater. Adv.*, 2022, 3, 1791–1803.

134. Z. Yuan, J. He, Z. Mahmood, L. Xing, S. Ji, Y. Huo, H.-L. Zhang, Dyes Pigm., 2022, 199, 110049.

135. B. Sanasam, M. K. Raza, D. Musib, M. Pal, M. Pal, M. Roy, ChemistrySelect, 2020, 5, 13824–13830.

136. S. K. Seth, P. Purkayastha, Eur. J. Inorg. Chem., 2020, 2020, 2990-2997.

137. B. Sanasam, M. K. Raza, D. Musib, M. Roy, J. Chem. Sci., 2021, 133, 42.

138. X.-K. Chen, L.-Y. Zou, A.-M. Ren, J.-X. Fan, Phys. Chem. Chem. Phys., 2011, 13, 19490–19498.

139. G. Velmurugan, B. K. Ramamoorthi, P. Venuvanalingam, Phys. Chem. Chem. Phys., 2014, 16, 21157–21171.

13. Życiorys i dorobek naukowy

Wykształcenie

- 2018 obecnie Uniwersytet Śląski w Katowicach, studia doktoranckie
- 2016 2018 Uniwersytet Śląski w Katowicach, studia magisterskie
- 2013 2016 Uniwersytet Śląski w Katowicach, studia licencjackie, specjalność: Chemia stosowana
- 2009 2013 Śląskie Techniczne Zakłady Naukowe, profil: Technik analityk.

Publikacje naukowe

- M. Małecka, B. Machura, A. Świtlicka, S. Kotowicz, G. Szafraniec-Gorol, M. Siwy, M. Szalkowski, S. Maćkowski, E. Schab-Balcerzak, Towards better understanding of photophysical properties of rhenium(I) tricarbonyl complexes with terpy-like ligands, *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, 2020, 231, 118124, DOI:10.1016/j.saa.2020.118124.
- A. Szlapa-Kula, M. Małecka, B. Machura, Insight into structure-property relationships of aryl-substituted 2,2':6',2"-terpyridines, *Dyes and Pigments*, 2020, 180, 108480, DOI:10.1016/j.dyepig.2020.108480.
- A. Kurpanik, M. Matussek, G. Szafraniec-Gorol, M. Filapek, P. Lodowski, B. Marcol-Szumilas, W. Ignasiak, J. G. Małecki, B. Machura, M. Małecka, W. Danikiewicz, S. Pawlus, S. Krompiec, APEX strategy represented by Diels-Alder cycloadditions new opportunities for the syntheses of functionalised PAHs, *Chemistry A European Journal*, 2020, 26, 12150-12157, DOI:10.1002/chem.202001327.
- M. Małecka, B. Machura, A. Szlapa-Kula, Optical properties of 2,6-di(pyrazin-2yl)pyridines substituted with extended aryl groups, *Dyes and Pigments*, 2021, 188, 109168, DOI:10.1016/j.dyepig.2021.109168.
- A. Szłapa-Kula, M. Małecka, A. M. Maroń, H. Janeczek, M. Siwy, E. Schab-Balcerzak, M. Szalkowski, S. Maćkowski, T. Pedzinski, K. Erfurt, B. Machura, In-depth studies of ground- and excited-state properties of Re(I) carbonyl complexes bearing 2,2':6',2"-terpyridine and 2,6-bis(pyrazin-2-yl)pyridine coupled with π-conjugated aryl chromophores, *Inorganic Chemistry*, 2021, 24, 18726-18738, DOI:10.1021/acs.inorgchem.1c02151.
- M. Małecka, A. Szlapa-Kula, A. M. Maroń, P. Ledwon, M. Siwy, E. Schab-Balcerzak, K. Sulowska, S. Maćkowski, K. Erfurt, B. Machura, Impact of the Anthryl Linking Mode on the Photophysics and Excited-State Dynamics of Re(I) Complexes

[ReCl(CO)₃(4'-An-terpy-κ²N)], *Inorganic Chemistry*, 2022, 61, 15070-15084, DOI:10.1021/acs.inorgchem.2c02160.

Konferencje naukowe

- XXIVth International Krutyń Summer School 2019, Krutyń, 1-7.09.2019, poster;
- InterNanoPoland 2019, Katowice, 16–17 października 2019, poster.

Staże, praktyki i szkolenia

- 2015 Główny Instytut Górnictwa, Zakład Oceny Jakości Paliw Stałych, miesięczna praktyka zawodowa;
- 2018 Kompania Piwowarska, Tyskie Browary Książęce, czteromiesięczny staż zawodowy;
- Szkolenie z zakresu oprogramowania STATISTICA realizowne przez firmę StatSoft Polska;
- Szkolenie specjalistyczne "Chromatografia cieczowa HPLC w ujęciu praktycznym rozszerzony kurs laboratoryjny" realizowane przez Wrocławski Park Technologiczny.

Udział w projektach naukowych

- Projekt NCN OPUS 2017/25/B/ST5/01611 "Od nowych kompleksów renu(I) z ligandami triiminowymi do efektywniejszych materiałów foto i elektroluminescencyjnych" – wykonawca, realizowany przez Uniwersytet Śląski w Katowicach, kierownik projektu: prof. dr hab. Barbara Machura;
- PIK Program Nowych Interdyscyplinarnych Elementów Kształcenia na studiach doktoranckich na kierunku chemia współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Stypendia

Stypendium przyznawane najlepszym doktorantom przez Rektora w latach 2018/2019, 2020/2021, 2021/2022 oraz stypednia motywacyjne projektu PIK.

ANEKS

1. Raporty checkCIF związków otrzymanych w formie monokryształów	Raport S1-S3
2. Widma ¹ H NMR i ¹³ C NMR dla związków Ar-terpy i Ar-dppy	Rysunek S1–S22
3. Widma ¹ H NMR i ¹³ C NMR dla związków koordynacyjnych renu(I)	Rysunek S23–S40
4. Widma HR-MS dla związków koordynacyjnych renu(I)	Rysunek S41–S50
5. Widma IR dla ligandów i związków koordynacyjnych renu(I)	Rysunek S51–S61
6. Zestawienie widm absorpcji, wzbudzenia i emisji oraz widma czasów życia	Rysunek S62-S63
luminescencji dla związków Ar-terpy i Ar-dppy	
7. Zestawienie widm absorpcji, wzbudzenia i emisji oraz widma czasów życia	Rysunek S64
luminescencji dla koordynacyjnych związków renu(I)	
8. Pliki input wykorzystywane w obliczeniach teoretycznych metodami DFT	Tabela S1
i TD-DFT dla ligdandów na przykładzie związku L ^{3A}	
9. Pliki input wykorzystywane w obliczeniach teoretycznych metodami DFT	Tabela S2
i TD-DFT dla związków koordynacyjnych na przykładzie związku 3A	
10.Widma stabilności dla związków 3A , 4A , 6A i 6B .	Rysunek S65
11.Widma fotostabilności dla związków 3A , 4A , 6A i 6B .	Rysunek S66

1. Raporty checkCIF związków otrzymanych w formie monokryształów

Raport S1. Raport checkCIF dla związku L^{1A}.

Raport S1. Raport checkC1F dia związku L ²² .					
checkCIF/PLATON repo	ort				
Structure factors have been supplied for datablock(s) AKdppy1a					
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.					
No syntax errors found. CIF dictionary Interpreting this report					
Datablock: AKdppy1a					
Bond precision:	C-C = 0.0040 A	Wavelength=0.71073			
Cell:	a=7.4460(7)	b=11.3269(9)	c=12.3624(10)		
Temperature:	alpna=66.660(8) 295 K	Dela-13.370(0)	gamma=/4.031(8)		
	Calculated	Reported			
Volume	902.39(15)	902.39(15)			
Space group	P -1	P -1			
Hall group	-P 1	-P 1			
Moiety formula	C23 H15 N5	C23 H15 N5			
Sum formula	C23 H15 N5	C23 H15 N5			
Mr	361.40	361.40			
Dx,g cm-3	1.330	1.330			
Z	2	2			
Mu (mm-1)	0.082	0.082			
F000	376.0	376.0			

F000′ 376.12 h,k,lmax 8,13,14 8,13,14 Nref 3190 3183 0.988,0.997 0.728,1.000 Tmin, Tmax 0.973 Tmin' Correction method= # Reported T Limits: Tmin=0.728 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.998 Theta(max) = 25.046wR2(reflections) = 0.1813(3183) R(reflections) = 0.0584(1660)S = 1.024Npar= 253 The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test. Alert level C PLAT230 ALERT 2 C Hirshfeld Test Diff for C16 --C175.7 s.u. • PLAT906 ALERT 3 C Large K Value in the Analysis of Variance 17.226 Check PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 3.103 Check PLAT910 ALERT 3 C Missing # of FCF Reflection(s) Below Theta(Min). 8 Note Alert level G PLAT154 ALERT 1 G The s.u.'s on the Cell Angles are Equal .. (Note) 0.008 Degree PLAT883 ALERT 1 G No Info/Value for atom sites solution primary . Please Do ! PLAT941 ALERT 3 G Average HKL Measurement Multiplicity 3.8 Low PLAT961_ALERT_5_G Dataset Contains no Negative Intensities Please Check PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density. 0 Info 0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or

IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/09/2020; check.def file version of 20/08/2020

Raport S2. Raport checkCIF dla związku L^{1B}.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) AKterpy1b

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: AKterpyb

Bond precision:	C-C = 01.0021 A	Wavelength=0.71073	
Cell: Temperature:	a=10.9626(13) alpha=90 295 K	b=9.7929(7) beta=90	c=34.215(3) gamma=90
	Calculated	Reported	
Volume	3673.2(6)	3673.2(6)	
Space group	Pbca	Рbса	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C25 H17 N3	C25 H17 N3	
Sum formula	C25 H17 N3	C25 H17 N3	

359.42 359.41 Mr 1.300 1.300 Dx,g cm-3 Ζ 8 8 0.078 0.078 Mu (mm-1) F000 1504.0 1504.0 F000' 1504.51 h,k,lmax 15,13,47 15,13,45 5161 4567 Nref 0.993,0.995 0.333,1.000 Tmin,Tmax 0.977 Tmin' Correction method= # Reported T Limits: Tmin=0.333 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.885 Theta(max) = 29.563R(reflections) = 0.0474(3022) wR2(reflections) = 0.1227(4567) S = 1.025Npar= 253 The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test. 🥥 Alert level C PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 7.206 Check PLAT910 ALERT 3 C Missing # of FCF Reflection(s) Below Theta(Min). 6 Note Alert level G PLAT883 ALERT 1 G No Info/Value for atom sites solution primary . Please Do ! PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 576 Note PLAT952_ALERT_5_G Calculated (ThMax) and CIF-Reported Lmax Differ PLAT958_ALERT_1_G Calculated (ThMax) and Actual (FCF) Lmax Differ 2 Units 2 Units PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density. 3 Info PLAT992 ALERT 5 G Repd & Actual reflns number gt Values Differ by 1 Check 0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of apaper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no

aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

Raport S3. Raport checkCIF dla związku 1A.

		1 t			
checkCIF/PLATON repo	ort				
Structure factors have been supplied for datablock(s) ak1a					
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.					
No syntax errors found. CIF dictionary Interpreting this report					
Datablock: ak1a					
Bond precision:	C-C = 0.0063 A	Wavelength=0.71073			
Cell:	a=7.6725(3)	b=13.7812(5)	c=16.2426(6)		
Temperature:	295 K	beca-00.495(3)	ganuna - / 4.204 (3)		
	Calculated	Reported			

1516.70(11) 1516.70(11) Volume P -1 Space group P -1 Hall group -P 1 -P 1 Moiety formula C28 H17 Cl N3 O3 Re C28 H17 Cl N3 O3 Re [+solvent] Sum formula C28 H17 Cl N3 O3 Re C28 H17 Cl N3 O3 Re [+solvent] Mr 665.11 665.09 1.456 Dx,g cm-3 1.456 Ζ 2 2 Mu (mm-1) 4.123 4.123 F000 644.0 644.0 F000′ 642.54 10,19,22 h,k,lmax 10,18,21 8497 7285 Nref Tmin,Tmax 0.458,0.561 0.308,1.000 Tmin' 0.234 Correction method= # Reported T Limits: Tmin=0.308 Tmax=1.000AbsCorr = MULTI-SCAN Data completeness= 0.857 Theta(max) = 29.537R(reflections) = 0.0283(6519)wR2(reflections) = 0.0702(7285) S = 1.048Npar= 325 The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test. 🎈 Alert level B PLAT910 ALERT 3 B Missing # of FCF Reflection(s) Below Theta(Min). 12 Note Alert level C PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L=C25 Check
5 Report
1 CheckPLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers ..1 Check 5 Report 1 Check Alert level G PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X)Re1--Cl1PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X)Re1--ClPLAT232_ALERT_2_G Hirshfeld Test Diff (M-X)Re1--C2 14.8 s.u. • 13.0 s.u. . 6.0 s.u. . PLAT232 ALERT 2 G Hirshfeld Test Diff (M-X) Re1 --C3 7.0 s.u. PLAT606 ALERT 4 G Solvent Accessible VOID(S) in Structure ! Info PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do ! PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF 1161 Note 1 Note PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File ... 5 Note PLAT941 ALERT 3 G Average HKL Measurement Multiplicity 2.2 Low PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density. 0 Info 0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected

```
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of apaper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checksare run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating toCIF submission.

2. Widma ¹H NMR i ¹³C NMR dla związków Ar-terpy i Ar-dppy

110 100 f1 (ppm) Rysunek S2. Widmo ¹³C NMR związku L^{1A}.

Rysunek S3. Widmo ¹H NMR związku L^{2A}.

Rysunek S4. Widmo ¹³C NMR związku L^{2A}.

f1 (ppm) Rysunek S6. Widmo ¹³C NMR związku L^{3A}.

Rysunek S8. Widmo ¹³C NMR związku L^{4A}.

Rysunek S9. Widmo ¹H NMR związku L^{5A}.

Rysunek S10. Widmo ¹³C NMR związku L^{5A}.

Rysunek S11. Widmo ¹H NMR związku L^{6A}.

Rysunek S12. Widmo ¹³C NMR związku L^{6A}.

Rysunek S16. Widmo ¹³C NMR związku L^{2B}.

Rysunek S18. Widmo ¹³C NMR związku L^{3B}.

Rysunek S20. Widmo ¹³C NMR związku L^{5B}.

Rysunek S22. Widmo ¹³C NMR związku L^{6B}.

3. Widma ¹H NMR i ¹³C NMR dla związków koordynacyjnych renu(I)

Rysunek S24. Widmo ¹³C NMR związku 1A.

Rysunek S26. Widmo ¹³C NMR związku 2A.

Rysunek S28. Widmo ¹³C NMR związku 3A.

Rysunek S30. Widmo ¹H NMR związku 5A.

157.63 156.84 156.84 156.24 155.29 152.88 151.85 151.85 169.41 -13352 13057 13019 12924 12924 12743 12743 12743 12743 12548 -161.09 ^{125,48}
 ^{125,00}
 ^{125,00}
 ^{125,00}
 ^{125,00} -122.97 -130.57 -123.70 129 24 -128.13 127.64 À. 125.5 124.5 f1 (ppm) 123.5 130.0 128.0 129.0 f1 (ppm)

Rysunek S32. Widmo ¹H NMR związku 6A.

10.3

10.1

9.9 9.8

Rysunek S34. Widmo ¹H NMR związku 1B.

15096 (1473) (14539 (14539) (14539) (14407 (14407 (14407) (14107) (14407) (14407) (14407) (14407) (125

Rysunek S36. Widmo ¹H NMR związku 2B.

Rysunek S38. Widmo ¹H NMR związku 5B.

160 155 f1 (ppm) Rysunek S39. Widmo ¹³C NMR związku 5B.

Rysunek S40. Widmo ¹H NMR związku 6B.
4. Widma HR-MS dla związków koordynacyjnych renu(I)

Rysunek S41. Widmo HR-MS związku 1A.

Rysunek S42. Widmo HR-MS związku 2A.

Rysunek S44. Widmo HR-MS związku 4A.

Rysunek S45. Widmo HR-MS związku 5A.

Rysunek S46. Widmo HR-MS związku 6A.

400 450 550 550 600 550 770 **Rysunek S47.** Widmo HR-MS związku **1B**.

Rysunek S49. Widmo HR-MS związku 5B.

5. Widma IR dla ligandów i związków koordynacyjnych renu(I)

Rysunek 51. Widmo IR dla związków L^{1A} i 1A.

Rysunek 52. Widmo IR dla związków L^{2A} i 2A.

Rysunek 53. Widmo IR dla związków L^{3A} i 3A.

Rysunek 54. Widmo IR dla związków L^{4A} i 4A.

Rysunek 55. Widmo IR dla związków L^{5A} i 5A.

Rysunek 56. Widmo IR dla związków L^{6A} i 6A.

Rysunek 57. Widmo IR dla związków L^{1B} i 1B.

Rysunek 58. Widmo IR dla związków L^{2B} i 2B.

Rysunek 59. Widmo IR dla związków L^{3B}.

Rysunek 60. Widmo IR dla związków L^{5B} i 5B.

Rysunek 61. Widmo IR dla związków L^{6B} i 6B.

6. Zestawienie widm absorpcji, wzbudzenia i emisji oraz widma czasów życia luminescencji dla związków *Ar-terpy* i *Ar-dppy*

Rysunek 62. Zestawienie widm absorpcji, wzbudzenia i emisji oraz czasów życia luminescencji dla Ar-terpy.

Rysunek 63. Zestawienie widm absorpcji, wzbudzenia i emisji oraz czasów życia luminescencji dla Ar-dppy.

7. Zestawienie widm absorpcji, wzbudzenia i emisji oraz widma czasów życia luminescencji dla koordynacyjnych związków renu(I)

Rysunek 63. Zestawienie widm absorpcji, wzbudzenia i emisji oraz czasów życia luminescencji dla koordynacyjnych związków renu(I).

8. Pliki input wykorzystywane w obliczeniach teoretycznych metodami DFT i TD-DFT dla ligdandów na przykładzie związku L^{3A}

Ontymelizeeje singletu						
Optymanzacja singletu						
%mem=8000MB						
%chk=L3A s def2TZVP ACN PBE1PBE.chk						
<pre>#p PBE1PBE gen pseudo=read SCF(maxcycle=900, conver=8)</pre>						
opt						
freq						
pop=(full,nbo)						
scrf(pcm,solvent=acetonitrile)						
L3A def2TZVP PBE1PBE						
	—	—				
0 1						
6	0.188407000	15.619519000	2.758383000			
7	0.162518000	17.444736000	4.892872000			
6	2.133160000	16.478730000	5.883198000			
6	-0.792878000	17.480334000	3.924981000			

1	1 0000 7 (000	16 177112000	1 007 107000			
6	1.09997/6000	16.4//112000	4.80/40/000			
7	3.053020000	15.507870000	5.850080000			
6	-0 703055000	13 571005000	1 593922000			
0	1 7022(1000	19.571003000	1.575722000			
6	-1./93361000	18.554/53000	4.0/1339000			
6	-0.784864000	16.598470000	2.841712000			
1	-1.539083000	16.682611000	2.069322000			
6	3 189444000	17 501370000	7 775179000			
1	2 252 428000	19.204220000	9.510179000			
1	3.233438000	18.294239000	8.5101/8000			
6	1.246126000	14.729564000	0.669832000			
6	-2.639616000	20.494855000	5.163155000			
1	-2 545385000	21 286105000	5 898154000			
6	1 152000000	15 558022000	2 757256000			
0	1.133900000	13.338032000	3.737230000			
1	1.935/46000	14.808851000	3.722001000			
6	2.395308000	13.831519000	-1.309751000			
1	2.486546000	13.072630000	-2.076800000			
6	2 630672000	12 422154000	2 461302000			
0	-2.030072000	12.422134000	2.401392000			
l	-3.433/00000	12.355812000	3.184640000			
6	0.230275000	14.630860000	1.631313000			
6	-3.803479000	19.436617000	3.407917000			
ů 1	4 664101000	10/1123/6000	2 750905000			
1	-4.004191000	19.412340000	2.750905000			
6	-0.588974000	12.580728000	0.572616000			
7	-2.848639000	18.490029000	3.232714000			
6	1.334141000	13,739287000	-0.362158000			
0	1 1000 20000	16 400057000	7 755050000			
6	4.109808000	10.49005/000	1.133930000			
1	4.90/514000	16.45/695000	8.487744000			
6	4.007053000	15.517579000	6.791263000			
1	4.735765000	14.716620000	6.791263000			
6	2 755050000	20 422040000	4 358716000			
0	-3.733030000	20.422040000	4.338/10000			
l	-4.5/066/000	21.125914000	4.473025000			
6	2.166440000	17.488425000	6.828654000			
1	1.406784000	18.260259000	6.831859000			
6	0.416056000	12 684286000	0.368568000			
0	0.410930000	12.004200000	-0.308308000			
I	0.497545000	11.925397000	-1.136685000			
6	2.213515000	15.799128000	0.657012000			
1	2.159002000	16.569344000	1.416583000			
6	1 745086000	13 452883000	2 557540000			
0	1.025002000	13.432003000	2.337340000			
I	-1.835092000	14.1/61/4000	3.358//5000			
6	3.194754000	15.863852000	-0.287376000			
1	3.897830000	16.687465000	-0.286308000			
6	3 288960000	14 842831000	-1 273429000			
0	1.007502000	14.072420000	2 004154000			
1	4.08/592000	14.8/8430000	-2.004154000			
6	-2.542369000	11.436731000	1.458247000			
1	-3.260104000	10.626063000	1.411241000			
6	-1 534306000	11 525726000	0 551249000			
0	1 4511(5000	10.7(5210000	0.331249000			
1	-1.451165000	10./05219000	-0.214/31000			
6	-1.645016000	19.549884000	5.024274000			
1	-0.762350000	19.585482000	5.650306000			
		a ()				
		00				
		def2TZVP				

		n ()				
		dof)T7VD				
		UCIZIZVI ****				
		ጥጥጥጥ				
		h 0				
		def2TZVP				

	Ohling	io widmo ska	maii			
	Udliczan	ne wiuma absol	peji			
%mem=20000MB						
%chk=L3A td def2TZVP ACN PBE1PBE.chk						
#p PBE1PBE gen pseudo=read SCF(maxcvcle=900, conver=8)						
non=(full nbo) ion(6/7=3) afinnut ion(2/11=1) aforint						
pop-(run,noo) rop(o/ /-5) gimput rop(2/11=1) giprint						
		, ·, ·1 \ m ·/	1. (1.50)			
	scrf(pcm,solvent	=acetonitrile) Td(1	nstates=150)			
	scrf(pcm,solvent	=acetonitrile) Td(1	nstates=150)			
	scrf(pcm,solvent L3A de	=acetonitrile) Td(1 ef2TZVP PBE1PF	nstates=150) BE			
	scrf(pcm,solvent L3A_de	=acetonitrile) Td(1 ef2TZVP_PBE1PI	nstates=150) 3E			

6	-0.373209000	-0.000134000	0.000065000			
7	2.409729000	0.000102000	-0.000025000			
6	2 528/00000	2 3581/1000	-0.456357000			
0	1 724040000	1 125(72000	0.217114000			
6	1./34049000	-1.1230/3000	0.21/114000			
6	1.733855000	1.125789000	-0.217101000			
7	1.847314000	3.488693000	-0.659349000			
6	-2.555485000	-0.491876000	-1.115502000			
6	2 528787000	2 357032000	0.456298000			
0	2.526767000	-2.337732000	0.734825000			
6	0.342041000	-1.168851000	0.224825000			
1	-0.160227000	-2.109125000	0.407296000			
6	4.621797000	3.489991000	-0.691859000			
1	5.705710000	3.486265000	-0.703972000			
6	2 555508000	0.401566000	1 115594000			
0	-2.333308000	0.491300000	1.113394000			
6	4.622362000	-3.489382000	0.692065000			
1	5.706272000	-3.485464000	0.704415000			
6	0.341846000	1.168717000	-0.224730000			
1	-0.160627000	2.108886000	-0.407173000			
6	4 688877000	0.080051000	2 242724000			
0	-4.088877000	0.9899931000	2.243724000			
I	-5.773601000	0.985511000	2.2227/3000			
6	-2.599335000	-1.452880000	-3.344653000			
1	-2.073895000	-1.822415000	-4.217894000			
6	-1 858706000	-0.000155000	0.000076000			
0	-1.050700000	-0.000155000	0.000070000			
6	2.531005000	-4.605365000	0.875049000			
1	1.942925000	-5.504841000	1.035539000			
6	-3.990686000	-0.490910000	-1.108830000			
7	1.847892000	-3.488642000	0.658897000			
6	3 000720000	0.400606000	1 108852000			
0	-3.990720000	0.490090000	1.108832000			
6	3.916201000	4.663931000	-0.902487000			
1	4.421373000	5.604446000	-1.083711000			
6	2.530253000	4.605496000	-0.875554000			
1	1 942035000	5 504831000	-1 036344000			
1	2 016048000	1 662512000	0.002215000			
0	3.910948000	-4.003313000	0.902313000			
l	4.422292000	-5.603940000	1.083517000			
6	3.921145000	2.318608000	-0.465312000			
1	4.427883000	1.378454000	-0.296215000			
6	-4 670725000	_0.000071000	0.000005000			
0	- 7.070723000	-0.000071000	0.000005000			
1	-5./563/9000	-0.00002/000	-0.000057000			
6	-1.894008000	0.984624000	2.277411000			
1	-0.811373000	0.982507000	2.307254000			
6	-1.893976000	-0.984989000	-2.277256000			
1	0.811330000	0.082056000	2 307085000			
I	-0.811339000	-0.982930000	-2.307083000			
6	-2.5993/8000	1.452509000	3.3447/8000			
1	-2.073989000	1.822000000	4.218070000			
6	-4.016799000	1.459504000	3.329734000			
1	-4 559883000	1 836836000	4 188531000			
6	4.016720000	1 450701000	3 329672000			
0	-4.010729000	-1.439/91000	-5.529072000			
l	-4.559831000	-1.83/134000	-4.188455000			
6	-4.688826000	-0.990142000	-2.243688000			
1	-5.773550000	-0.985641000	-2.222808000			
6	3 921538000	-2 318103000	0 465576000			
ů 1	4 428102000	1 377802000	0.206783000			
1	4.428102000	-1.377802000	0.290783000			
		c 0				
		def2TZVP				

		n ()				
		110				
		def21ZVP				

		h 0				
		def2T7VP				

	01.12	•				
Obliczanie luminescencji ze stanu s1						
%mem=20000MB						
%chk=L3A s1 def2TZVP ACN PBE1PBE.chk						
#p PBE1PBE gen SCF(maxcycle=900 conver=8) ion(6/7=3) ofinnut officint ion(2/11=1)						
"PIDDIIDE Sen Sei (maxeyere 700, conver 0) rop(0,7 5) gimpar gipint rop(2/11-1)						
	1	pop=(tull,nbo)				

scrf(pcm,solvent=acetonitrile) td(nstates=4, root=1, conver=4)				
L3A_def2TZVP_PBE1PBE				
0.1				
Koordynaty jak w obliczeniu widma absorpcji				
c 0				
def2TZVP				

n 0				
def2TZVP				

h 0				
def2TZVP				

Anion				
%mem=20000MB				
%cnk=L3A a detzIZVP ACN PBEIPBE.cnk				
#p PBE1PBE gen pseudo-read SCr(maxcycle-900, conver-8)				
opi non=(full nho)				
pop-(1011,1100) sorf(nem solvent=scetonitrile)				
sen(peni,sorvent=accontine)				
L3A_def2TZVP_PBE1PBE				
-1 2				
Koordynaty jak w obliczeniu widma absorncij				
c 0				
def2TZVP				

n 0				
def2TZVP				

h 0				
def2TZVP				

Kation				
%mem=20000MB				
% chk=L3A K detZ1ZVP ACN PBE1PBE.chk				
#p PBE1PBE gen pseudo=read SCr(maxcycle=900, conver=8)				
opi non-(full nho)				
pop-(1011,1100) sorf(nem solvent=scetonitrile)				
sen(peni,sorvent=accontine)				
L3A_def2TZVP_PBE1PBE				
1 2				
Koordynaty jak w obliczeniu widma absorpcji				
c 0				
def2TZVP				

n 0				
def2TZVP				

h 0				
det21ZVY ****				
Deno do obliczonie wortości FFD				
Dane do obliczenia wartości EEP				
%chk=I3A a? def7T7VP ACN PRF1PRF chk				
#n PRE1PRE gen nseudo=read SCF(maxcvcle=900_conver=8)				
non=(full nbo)				
scrf(pcm,solvent=acetonitrile)

L3A_def2TZVP_PBE1PBE

0 1

		0 1	
6	-0.384217000	-0.000006000	-0.000002000
7	2.446930000	0.000000000	-0.000004000
6	2.541088000	2.320789000	-0.619051000
6	1 752160000	-1 106413000	0.287280000
6	1 752155000	1 106411000	-0 287284000
7	1.867160000	3 118365000	0.8672204000
2	2 562227000	1.002205000	-0.807220000
0	-2.302227000	-1.002303000	-0.732882000
6	2.541097000	-2.320789000	0.619046000
6	0.366082000	-1.148636000	0.292314000
I	-0.12317/000	-2.0//125000	0.551151000
6	4.639250000	3.422530000	-0.970243000
1	5.722720000	3.407309000	-1.009410000
6	-2.562218000	1.002298000	0.732886000
6	4.639264000	-3.422522000	0.970235000
1	5.722733000	-3.407298000	1.009400000
6	0.366077000	1.148628000	-0.292315000
1	-0.123186000	2.077116000	-0.551146000
6	-4 702489000	2 000974000	1 422314000
1	-5 787732000	1 995242000	1.122311000
6	2 653840000	2 02/212000	2 252244000
1	-2.033640000	-2.924213000	-2.232244000
I	-2.120021000	-3.04010/000	-2.8003/3000
6	-1.845/91000	-0.000006000	0.000001000
6	2.554113000	-4.544696000	1.161966000
1	1.968625000	-5.439472000	1.357095000
6	-4.000899000	-1.000939000	-0.708475000
7	1.867183000	-3.448367000	0.867217000
6	-4.000889000	1.000943000	0.708484000
6	3.939114000	4.591150000	-1.227091000
1	4.446672000	5.515968000	-1.471760000
6	2.554095000	4.544697000	-1.161969000
1	1.968604000	5.439471000	-1.357096000
6	3,939132000	-4.591145000	1.227085000
1	4 446694000	-5 515960000	1 471754000
6	3 935018000	2 272387000	-0.663130000
1	1 436648000	1 336912000	-0.457020000
6	4.690951000	0.000005000	0.000005000
1	-4.060631000	0.000003000	0.000003000
1	-3./0/3/1000	1.0(0202000	1.552507000
0	-1.938209000	1.969393000	1.552597000
I	-0.859816000	1.961559000	1.64948/000
6	-1.938290000	-1.969405000	-1.55259/000
1	-0.859838000	-1.961580000	-1.649493000
6	-2.653808000	2.924207000	2.252247000
1	-2.125981000	3.646157000	2.866375000
6	-4.049476000	2.952845000	2.175163000
1	-4.613876000	3.706649000	2.713978000
6	-4.049507000	-2.952840000	-2.175154000
1	-4.613916000	-3.706639000	-2.713967000
6	-4.702510000	-2.000964000	-1.422302000
1	-5 787752000	-1 995223000	-1 372386000
6	3 935027000	-2 272382000	0.663122000
1	1 436654000	1 336006000	0.003122000
1	4.430034000	-1.550900000	0.437010000
		a ()	
		ueiziZVP	

		n U	
		def21ZVP	

		h 0	
		def2TZVP	

Dane do obliczenia wartości HEP

%mem=20000MB %chk=L3A_k2_def2TZVP_ACN_PBE1PBE.chk #p PBE1PBE gen pseudo=read SCF(maxcycle=900, conver=8) pop=(full,nbo) scrf(pcm,solvent=acetonitrile)

L3A_def2TZVP_PBE1PBE

		0 1	
6	-0.363571000	0.000000000	-0.000001000
7	2.406180000	-0.000002000	-0.000003000
6	2.526749000	2.335849000	-0.567487000
6	1.734441000	-1.116259000	0.267582000
6	1.734442000	1.116255000	-0.267587000
7	1.839941000	3.451001000	-0.826210000
6	-2.549205000	-0.668227000	-1.031124000
6	2.526746000	-2.335852000	0.567482000
6	0.342260000	-1.164250000	0.270462000
1	-0.158807000	-2.095946000	0.494085000
6	4.614698000	3.460050000	-0.860850000
1	5.698472000	3.459933000	-0.873799000
6	-2.549200000	0.668231000	1.031130000
6	4.614693000	-3.460045000	0.860892000
1	5.698466000	-3.459919000	0.873882000
6	0.342262000	1.164249000	-0.270466000
1	-0.158804000	2.095946000	-0.494089000
6	-4.681771000	1.330236000	2.041852000
1	-5.765271000	1.326102000	2.022126000
6	-2.608420000	-1.957725000	-3.082866000
1	-2.079189000	-2.451390000	-3.888510000
6	-1.842523000	0.000001000	0.000001000
6	2.518091000	-4.557961000	1.098754000
1	1.926827000	-5.445905000	1.304238000
6	-3.978611000	-0.669764000	-1.020137000
7	1.839937000	-3.451017000	0.826152000
6	-3.978605000	0.669771000	1.020149000
6	3.904237000	4.618684000	-1.129687000
1	4.406034000	5.550485000	-1.358724000
6	2.518096000	4.557943000	-1.098816000
1	1.926832000	5.445878000	-1.304342000
6	3.904231000	-4.618691000	1.129674000
1	4.406027000	-5.550494000	1.358706000
6	3.918698000	2.298551000	-0.574773000
1	4.429428000	1.370278000	-0.358821000
6	-4.661921000	0.000004000	0.000007000
1	-5.746715000	0.000005000	0.000010000
6	-1.890724000	1.314957000	2.091766000
1	-0.809723000	1.305683000	2.137503000
6	-1.890735000	-1.314955000	-2.091763000
1	-0.809734000	-1.305682000	-2.137505000
6	-2.608403000	1.957729000	3.082873000
1	-2.079167000	2.451392000	3.888515000
6	-4.003388000	1.971189000	3.058518000
1	-4.553834000	2.477712000	3.841438000
6	-4.003405000	-1.971182000	-3.058506000
1	-4.553854000	-2.477704000	-3.841424000
6	-4.681782000	-1.330227000	-2.041838000
1	-5.765282000	-1.326091000	-2.022107000
6	3.918695000	-2.298544000	0.574819000
1	4.429425000	-1.370263000	0.358907000
		c 0	
		def2TZVP	

		n U def)T7VD	

h 0
def2TZVP

9. Pliki input wykorzystywane w obliczeniach teoretycznych metodami DFT i TD-DFT dla związków koordynacyjnych na przykładzie związku 3A

Tabela S2. Pliki input dla związku 3A.

Optymalizacja singletu			
%chk=3A s .chk			
<pre>#p PBE1PBE gen pseudo=read SCF(maxcycle=900, conver=8)</pre>			
opt			
freq			
pop=(full,nbo)			
scrf(pcm,solvent=acetonitrile)			

3A_s_def2TZVPD_ACN_PBE1PBE

		0.1	
~	2 54(207000	01	1 2 (0 (1 1 0 0 0
6	3.546297000	-0.033361000	1.360611000
6	3.0/0169000	1./65466000	-0.66/665000
6	4.400209000	-0.521981000	-1.14/635000
6	2.940165000	-3.23266/000	0.038143000
I	3.854942000	-3.093649000	-0.055455000
6	2.503798000	-4.476849000	0.262087000
I	3.109918000	-5.172698000	0.377475000
6	1.138702000	-4.720820000	0.320838000
1	0.814859000	-5.584963000	0.436201000
6	0.265054000	-3.643503000	0.203273000
1	-0.654451000	-3.778971000	0.235773000
6	0.766727000	-2.397051000	0.041241000
6	-0.066521000	-1.152675000	0.078810000
6	-1.430828000	-1.193038000	-0.075830000
1	-1.850209000	-1.991735000	-0.301912000
6	-2.183817000	-0.039204000	0.105895000
6	-1.502888000	1.093165000	0.552591000
1	-1.974151000	1.859935000	0.786890000
6	-0.118905000	1.069615000	0.645519000
6	0.533907000	2.332137000	1.125654000
6	1.416073000	2.284288000	2.197644000
1	1.659551000	1.468447000	2.571831000
6	1.927825000	3.468122000	2.701293000
1	2.521364000	3.468419000	3.417261000
6	1.527469000	4.651040000	2.104717000
1	1.838206000	5.469574000	2.418335000
6	0.676922000	4.592395000	1.058566000
1	0.446743000	5.389671000	0.638723000
6	-3.668009000	-0.056728000	-0.066967000
6	-4.345173000	-1.191241000	0.290304000
6	-5.734121000	-1.238795000	0.230126000
6	-6.464563000	-0.165126000	-0.154932000
1	-7.393572000	-0.205747000	-0.140648000
6	-5.813557000	1.020852000	-0.579857000
6	-6.546583000	2.092594000	-1.093636000
1	-7.475234000	2.043227000	-1.101789000
6	-5.941618000	3.201272000	-1.580058000
1	-6.445681000	3.923143000	-1.879598000
6	-4.533493000	3.241402000	-1.624189000
1	-4.108862000	3.989992000	-1.976622000
6	-3.804024000	2.232240000	-1.172796000
1	-2.878558000	2.278372000	-1.252050000
6	-4.376297000	1.093749000	-0.578270000
7	2.114513000	-2.169573000	-0.058285000
7	0.598620000	0.018782000	0.347066000

7 0.136624000 3.443248000 0.580971000	
8 4.058204000 0.053026000 2.378052000	
8 3.349010000 2.845988000 -0.846659000	
8 5.396708000 -0.762574000 -1.663807000	
17 1.542990000 -0.298677000 -2.536191000	
75 2.712295000 -0.114898000 -0.351356000	
6 -6.458634000 -2.543425000 0.610417000	
6 -5.936762000 -3.530072000 1.342914000	
6 -3.637097000 -2.227305000 1.182940000	
6 -4.370850000 -3.239977000 1.512337000	
1 -7.470831000 -2.670493000 0.255860000	
1 -6.294658000 -4.537732000 1.494344000	
1 -2.583824000 -2.466025000 1.177534000	
1 -3.825598000 -4.039766000 1.991334000	
D - 0	
$\begin{array}{c} \text{Ke} 0 \\ \text{S} 2 1 0 \\ \end{array}$	
30.00000000 0.51780717811 27.000000000 0.46402221222	
13 078045684 0 45723641305	
13.078043084 0.43723041303 S 1 1.00	
5 0352712861 1 0000000	
S 1 100	
1 0482706438 1 0000000	
1.0462700438 1.0000000 S 1 100	
0.47708773413 1.0000000	
S 1 100	
0 12225857255 1 0000000	
S 1 100	
0 44007400609D-01 1 0000000	
P 4 1.00	
18.00000000 -0.26890962397D-01	
12.318606250 0.99711498502D-01	
5.3719234505 -0.29289398145	
1.3506646748 0.51466301434	
P 1 1.00	
0.66212816808 1.0000000	
P 1 1.00	
0.31071385193 1.0000000	
P 1 1.00	
0.0700000000 1.0000000	
P 1 1.00	
0.29651190664D-01 1.0000000	
D 4 1.00	
7.7352877672 0.83901798556D-01	
6.0949443610 -0.17722258734	
1.3871105497 0.55238259692	
0.62324027854 0.91980111239	
D = 1 = 1.00	
0.2651/32854/ 1.00000000	
0.10321096849 1.0000000	
F I 1.00	
0.4898900 1.0000000	
cÛ	
defTTTVP	

n ()	
def2TZVP	

h 0	
def2TZVP	

cl 0	
def2TZVP	

o 0				
def2TZVP				

		RE 0		
	RF-1	FCP $3 60$		
		f potential		
	2 2 509/50	1	1095227	
	2 2.508650	159 16.44	4985227	
	S	-f potential		
		3		
	2 14.099305	10 1038.9	95157226	
	2 7.049652	250 29.56	6173830	
	2 2.508650	-16.44	4985227	
	р	-f potential		
	1	3		
	2 10 10771 ϵ	590 339 54	54350965	
	2 5 053858	21 01	1369646	
	2 3.033030	50 24.71	4095227	
	2 2.508050	-10.44	4985227	
	d	-f potential		
		3		
	2 6.848617	94 111.69	9965275	
	2 3.424308	397 12.62	2432927	
	2 2.508650	-16.44	4985227	
	Obliczani	e widma abso	orpcii	
	%chk=3	A td TZVPD c	zhk	
	#n PRE1P	RE gen nseudo=	=read	
SCE(mayayala=0		$=(f_{11})$	= 2) a finally tion(2/11 = 1) a family tion(2/11 = 1)	
SCF(IIIaxCycle=9	50, conver=8) pop	-(1011) 10p(0/7-)	(1-5) gimput top $(2/11-1)$ giptint	
5	cri(pcm,solvent=a	icetonitrile) 1d(1	(nstates=150)	
	3A_td_def212	ZVPD_ACN_PE	BE1PBE	
		01		
6	3.418399000	-0.241718000	1.556835000	
6	3.226197000	1.707289000	-0.306279000	
6	4,496345000	-0.501326000	-0.857226000	
6	2 824539000	-3 273037000	-0.341323000	
1	3 885649000	-3.073153000	-0.401875000	
1 6	2 242268000	4 564682000	0.205255000	
0	2.342306000	-4.304082000	-0.393233000	
1	3.033204000	-3.390349000	-0.498957000	
6	0.9/4606000	-4./64629000	-0.310311000	
I I	0.5560/9000	-5./62/13000	-0.343628000	
6	0.145417000	-3.667999000	-0.173230000	
1	-0.921944000	-3.808895000	-0.086394000	
6	0.696947000	-2.393445000	-0.129736000	
6	-0.111881000	-1.179174000	0.052714000	
6	-1.492960000	-1.209824000	-0.045008000	
1	-2.003100000	-2.130690000	-0.288747000	
6	-2.231370000	-0.047737000	0.130115000	
6	-1 529053000	1 101595000	0 457416000	
1	-2 04/267000	2 033862000	0.646950000	
	0 1/65/1000	1 071104000	0.572866000	
0	-0.140341000	2 20742000	1.050064000	
6	0.32123/000	2.30/429000	1.030904000	
6	1.3182/8000	2.284/15000	2.190426000	
1	1.505829000	1.353933000	2.709104000	
6	1.836413000	3.480314000	2.658039000	
1	2.452582000	3.498778000	3.549171000	
6	1.547397000	4.647020000	1.970167000	
1	1.933886000	5.604399000	2.296455000	
6	0.732227000	4.567421000	0.850561000	
1	0 476904000	5 463608000	0 292982000	
	-3 706543000	-0.042842000	-0.009295000	
0	4 500026000	0.665797000	0.068/135000	
6	-4.300030000	-0.003/8/000	0.200433000	
6	-3.92/463000	-0.039036000	0.821008000	
6	-6.500/58000	-0.032/66000	-0.2/8614000	
1	-7.581308000	-0.029170000	-0.382830000	
6	-5.723407000	0.589977000	-1.248321000	

6	-6.317146000 1.226547000 -2.373488000		
1	-7.398974000 1.223912000 -2.453661000		
6	-5.550510000 1.820925000 -3.327472000		
1	-6.013479000 2.302597000 -4.180824000		
6	-4.138199000 1.805301000 -3.212601000		
1	-3.535613000 2.271175000 -3.983837000		
6	-3.530857000 1.208210000 -2.149336000		
1	-2.449633000 1.200290000 -2.088217000		
6	-4 294262000 0 586438000 -1 119546000		
7	2 025818000 -2 209781000 -0 212799000		
7	0.563426000 -0.040544000 0.323058000		
7	0.214247000 3.429388000 0.400924000		
/ 9	2 860412000 0 202710000 2 622770000		
0	2 545005000 2 202100000 0 200005000		
8 0	5.503003000 2.802199000 -0.590993000		
8	5.559264000 -0.722577000 -1.241585000		
17	1./94956000 -0.09438/000 -2.529693000		
/5	2./36196000 -0.15038/000 -0.215563000		
6	-6.729739000 -1.290702000 1.812582000		
6	-6.164195000 -1.888347000 2.896189000		
6	-3.952637000 -1.289861000 2.126361000		
6	-4.756009000 -1.881274000 3.054200000		
1	-7.806873000 -1.280802000 1.684135000		
1 -	-6.785312000 -2.365279000 3.645387000		
1	-2.879834000 -1.286869000 2.274430000		
1	-4.315472000 -2.348517000 3.927492000		
	Re 0		
	S 3 1.00		
	30.00000000 0.31780717811		
	27.00000000 -0.46492321332		
	13 078045684 0 45723641305		
	S 1 100		
	5.0352712861 1.0000000		
	S 1 1 00		
	1.0462/00436 1.0000000 C 1 1.00		
	5 1 1.00		
	0.4//08//3413 1.0000000		
	S 1 1.00		
	0.12225857255 1.0000000		
	S 1 1.00		
	0.44007400609D-01 1.0000000		
	P 4 1.00		
	18.00000000 -0.26890962397D-01		
	12.318606250 0.99711498502D-01		
	5.3719234505 -0.29289398145		
	1.3506646748 0.51466301434		
	P 1 1.00		
	0.66212816808 1.0000000		
	P 1 1.00		
	0.31071385193 1.0000000		
	P 1 1.00		
	0.0700000000 1.0000000		
	P 1 100		
	0.29651190664D-01 1.0000000		
	$D_{1} = \frac{1}{100}$		
	7 7252977672 0 92001709556D 01		
	6 0040442610 0 17722259724		
	0.0747445010 -0.1772220150201		
	1.30/110349/ 0.33230239092 0.63234037054 0.01080111330		
	0.02524027834 0.91980111239		
	D 1 1.00		
	0.26517528547 1.0000000		
0.10321096849 1.0000000			
0.4898900 1.0000000			

	c 0		

def2TZVP			

n 0			
def2TZVP			

h O			
def7TZVP			

del212VP			

o 0			
def2TZVP			

RE 0			
RE-ECP 3 60			
f potential			
1			
2 2 50865050 16 44085227			
2 2.JU00J0J7 10.7770J221			
s-i potential			
3			
2 14.09930510 1038.95157226			
2 7.04965250 29.56173830			
2 2.50865059 -16.44985227			
p-f potential			
3			
2 10.10771690 339.54350965			
2 5.05385830 24.91369646			
d frotatio			
2 0.84801/94 111.09905275			
2 3.42430897 12.62432927			
2 2.50865059 -16.44985227			
Optymalizacja trypletu			
%chk=3A t TZVPD.chk			
#p PBE1PBE gen pseudo=read			
SCF(maxcvcle=900, conver=8)			
ont			
non=(full nho)			
sorf(nom solvent=scetonitrile)			
sen(pen,sorven=acetonune)			
$2 \Lambda + J_{2} P T T V D D + C \Lambda U D D D D D D D D D D D D D D D D D D$			
2A_T_GEI71ZAAD_ACN_ARETARE			
03			
Koordynaty jak w obliczeniu widma absorpcji			
Re 0			
S 3 1.00			
30.00000000 0.31780717811			
27.00000000 -0.46492321332			
13 078045684 0 45723641305			
S 1 100			
5 0252712861 1 000000			
5.0532/12001 1.0000000 G 1 100			
1.0482/06438 1.0000000			
<u>S 1 1.00</u>			
0.47708773413 1.0000000			
S 1 1.00			
0.12225857255 1.0000000			
S 1 1.00			
0.44007400609D-01 1.0000000			
P 4 1.00			
18.00000000 -0.26890962397D-01			
[2,318606250 0.99711498502D-01			
12.318606250 0.99711498502D-01 5 3719234505 -0 29289398145			

1.3506646748 0.51466301434 P 1 1.00 0.66212816808 1.0000000 P 1 1.00 0.31071385193 1.0000000 P 1 1.00 0.07000000000 1.0000000 P 1 1.00 0.29651190664D-01 1.0000000 D 4 1.00 7.7352877672 0.83901798556D-01 6.0949443610 -0.17722258734 1.3871105497 0.55238259692 0.62324027854 0.91980111239 D 1 1.00 0.26517328547 1.0000000 D 1 1.00 0.10321096849 1.0000000 F 1 1.00 0.4898900 1.0000000 **** c 0 def2TZVP **** n 0 def2TZVP **** h 0def2TZVP **** cl 0 def2TZVP **** o 0 def2TZVP **** RE 0 RE-ECP 3 60 f potential 1 2.50865059 16.44985227 2 s-f potential 3 2 14.09930510 1038.95157226 2 7.04965250 29.56173830 2 2.50865059 -16.44985227 p-f potential 3 2 10.10771690 339.54350965 2 5.05385830 24.91369646 2.50865059 2 -16.44985227 d-f potential 3 2 6.84861794 111.69965275 2 3.42430897 12.62432927 2 2.50865059 -16.44985227 Luminescencja liczona z trypletu %chk=3A st.chk #p PBE1PBE gen pseudo=read SCF(maxcycle=900, conver=8) pop=(full,nbo) scrf(pcm,solvent=acetonitrile) 3A_st_def2TZVPD_ACN_PBE1PBE 01 -3.449259000 -0.317655000 -1.507888000 6

S I 1.00 5.0252712861 1.0000000				
	13.0780456	584 0.4572 S 1 1 00	23641305	
	27.000000	-0.4649	2321332	
	30.0000000	0.3178	80717811	
		S 3 1.00		
		Re 0		
1	4.291084000	-3.429784000	-3.115275000	
1	2.892417000	-1.817850000	-1.917360000	
1	6.736900000	-3.503213000	-2.708502000	
1	7.756954000	-1.902913000	-1.113525000	
6	4.751788000	-2.760044000	-2.399156000	
6 6	3.952438000	-2.790030000	-2.177514000 -1.700024000	
6	6.684120000	-1.898223000	-1.273317000	
75	-2.733571000	-0.149485000	0.244878000	
17	-1.756287000	0.004124000	2.542309000	
8	-5.534445000	-0.686409000	1.350708000	
8	-3.564710000	2.806979000	0.305951000	
/ 8	-3.912351000	-0.415283000	-0.388388000	
7	-0.5//991000	-0.054546000	-0.534982000	
7	-2.015518000	-2.205357000	0.315033000	
6	4.312801000	0.942706000	0.862796000	
1	2.506117000	1.829749000	1.614028000	
6	3.587910000	1.838929000	1.643007000	
1	3.618593000	3.445675000	3.073395000	
1 6	4.220821000	2.758987000	2.490848000	
6 1	5.594293000 6.093992000	2.779251000	2.382207000	
1	7.427340000 5.594293000	1.855849000	1.926427000	
6	6.346011000	1.862732000	1.841266000	
6	5.735474000	0.938983000	0.994865000	
1	7.579800000	-0.029026000	0.415125000	
6	6.502305000	-0.025100000	0.292334000	
0 6	5.906869000	-0.977493000	-0.572588000	
6	3.08/419000 4 490/01000	-0.021260000	-0.018113000	
1	-0.502919000	5.451360000	-0.590061000	
6	-0.763012000	4.524803000	-1.093264000	
1	-1.989737000	5.476796000	-2.576132000	
6	-1.594811000	4.540114000	-2.203146000	
0 1	-2.518629000	3.303002000	-3.702340000	
1	-1.551053000	1.211241000	-2./58/30000	
6	-1.359805000	2.169955000	-2.295230000	
6	-0.545914000	2.257209000	-1.170524000	
6	0.129915000	1.049874000	-0.633632000	
1	2.011350000	2.022072000	-0.762784000	
6	2.233651000	-0.038348000	-0.15/4/9000	
1	2.000157000	-2.108625000	0.341247000	
6	1.491040000	-1.200156000	0.054790000	
6	0.111941000	-1.178292000	-0.027792000	
6	-0.687192000	-2.387358000	0.217446000	
0 1	0.935227000	-3.799860000	0.203103000	
1	-0.530969000	-5./45384000	0.304618000	
6	-0.953643000	-4.750651000	0.498212000	
1	-3.006996000	-5.375080000	0.745799000	
6	-2.321123000	-4.551883000	0.597543000	
1	-3.869151000	-3.065715000	0.568158000	
6	-2 808428000	-3 265229000	0.933071000	
6	-3.226233000	1.709206000	0.263961000	
6	2 226222000	1 700206000	0.262061000	

1.0482706438 1.0000000 S 1 1.00 0.47708773413 1.0000000 S 1 1.00 0.12225857255 1.0000000 S 1 1.00 0.44007400609D-01 1.0000000 P 4 1.00 -0.26890962397D-01 18.00000000 12.318606250 0.99711498502D-01 5.3719234505 -0.29289398145 1.3506646748 0.51466301434P 1 1.00 1.0000000 0.66212816808 P 1 1.00 0.31071385193 1.0000000 P 1 1.00 0.07000000000 1.0000000 P 1 1.00 0.29651190664D-01 1.0000000 D 4 1.00 7.7352877672 0.83901798556D-01 6.0949443610 -0.17722258734 1.3871105497 0.55238259692 0.62324027854 0.91980111239 D 1 1.00 0.26517328547 1.0000000 D 1 1.00 0.10321096849 1.0000000 F 1 1.00 0.4898900 1.0000000 **** c 0 def2TZVP **** n 0 def2TZVP **** h 0def2TZVP **** cl 0 def2TZVP **** o 0 def2TZVP **** RE 0 RE-ECP 3 60 f potential 1 2 2.50865059 16.44985227 s-f potential 3 2 14.09930510 1038.95157226 2 7.04965250 29.56173830 2 -16.44985227 2.50865059p-f potential 3 2 10.10771690 339.54350965 2 5.05385830 24.91369646 2 2.50865059 -16.44985227 d-f potential 3 2 6.84861794 111.69965275

12.62432927

2

3.42430897

2 2.50865059 -16.44985227
Anion
%chk=3A a TZVPD chk
#p PBE1PBE gen pseudo=read_SCE(maxcycle=900_conver=8)
"priblind gen pould real set (maxeyer 500, conver 6)
pop=(fill nbo)
sorf(nem solvent_acatonitrila)
seripen, solvent=acetointine)
SA_a_del212VPD_ACN_PBE1PBE
-12
Koordynaty jak w obliczeniu widma absorpcji
Re 0
S 3 1.00
30.00000000 0.31780717811
27.00000000 -0.46492321332
13.078045684 0.45723641305
S 1 1.00
5.0352712861 1.0000000
S 1 1.00
1.0482706438 1.0000000
S 1 100
0.47708773413 1.0000000
S 1 100
0.12225857255 1.0000000
S 1 1 00
D. 4400 / 4000 92-01 1.0000000
18.00000000 - 0.26890962397D-01
12.318006250 0.99711498502D-01
5.3/19234505 -0.29289398145
1.3506646748 0.51466301434
0.66212816808 1.0000000
P 1 1.00
0.310/1385193 1.0000000
P 1 1.00
0.0700000000 1.0000000
P 1 1.00
0.29651190664D-01 1.0000000
D 4 1.00
7.7352877672 0.83901798556D-01
6.0949443610 -0.17722258734
1.3871105497 0.55238259692
0.62324027854 0.91980111239
D 1 1.00
0.26517328547 1.0000000
D 1 1.00
0.10321096849 1.0000000
F 1 1.00
0.4898900 1.000000

c 0
def2TZVP

n 0
def2TZVP

h 0
def?TZVP

c1 0
def)T7V/D
uci2 1 Zi V 1 ****
o ()
00 Jaf7T7VD

	RE	0
	RE-ECP	3 60
	f pote	ential
	_	1
2	2.50865059	16.44985227
	s-f pot	ential
		3
2	14.09930510	1038.95157226
2	7.04965250	29.56173830
2	2.50865059	-16.44985227
	p-f pot	ential
		3
2	10.10771690	339.54350965
2	5.05385830	24.91369646
2	2.50865059	-16.44985227
	d-f pot	ential
		3
2	6.84861794	111.69965275
2	3.42430897	12.62432927
2	2 50865059	-16 44985227

Kation

%chk=3A_k_TZVPD.chk

#p PBE1PBE gen pseudo=read SCF(maxcycle=900, conver=8)

opt pop=(full,nbo) scrf(pcm,solvent=acetonitrile)

$3A_k_def2TZVPD_ACN_PBE1PBE$

1 2 Koordynaty jak w obliczeniu widma absorpcji

Re 0

S 3 1.00 30.00000000 0.31780717811 27.00000000 -0.46492321332 13.078045684 0.45723641305 S 1 1.00 5.0352712861 1.0000000S 1 1.00 1.0482706438 1.0000000 S 1 1.00 0.47708773413 1.0000000 S 1 1.00 0.12225857255 1.0000000S 1 1.00 0.44007400609D-01 1.0000000 P 4 1.00 18.00000000 -0.26890962397D-01 12.318606250 0.99711498502D-01 5.3719234505 -0.29289398145 0.51466301434 1.3506646748 P 1 1.00 0.662128168081.0000000 P 1 1.00 0.31071385193 1.0000000 P 1 1.00 0.0700000000 1.0000000P 1 1.00 0.29651190664D-01 1.0000000 D 4 1.00 7.7352877672 0.83901798556D-01 6.0949443610 -0.17722258734 1.3871105497 0.55238259692 0.62324027854 0.91980111239

D 1 100
0.26517328547 1.0000000
D 1 1.00
0.10321096849 1.0000000
F I 1.00
0.4898900 1.0000000 ****
c 0
def2TZVP

n 0
del212VP ****
h 0
def2TZVP

def21ZVP ****
00
def2TZVP

RE 0
RE-ECP 3 60
1 potential
2 2.50865059 16.44985227
s-f potential
3
2 14.09930510 1038.95157226
2 /.04965250 29.561/3830 2 2 50865050 16.44085227
2 2.50005059 -10.44905227
3
2 10.10771690 339.54350965
2 5.05385830 24.91369646
2 2.50865059 -16.44985227
d-I potential
2 6.84861794 111.69965275
2 3.42430897 12.62432927
2 2.50865059 -16.44985227
Dane do obliczenia wartości EEP
%chk=3A_a2_TZVPD_2.chk
#p PBE1PBE gen pseudo=read SCF(maxcycle=900, conver=8)
scrf(pcm.solvent=acetonitrile)
(1)
3A_a2_def2TZVPD_2_ACN_PBE1PBE
U I 6 2 220491000 0 275751000 1 610208000
6 -3.262138000 -1.696041000 -2.16034000
6 -4.537547000 -0.516474000 0.726711000
6 -2.823425000 -3.270465000 0.454051000
1 -3.889163000 -3.076665000 0.460813000
6 -2.347900000 -4.547437000 0.610262000
1 -5.03/419000 -5.5/0519000 0./401/6000 6 -0.952506000 -4.738305000 0.596361000
1 -0.530062000 -5.729357000 0.714013000
6 -0.132672000 -3.659138000 0.421110000
1 0.938902000 -3.801425000 0.390123000
6 -0.674347000 -2.363566000 0.257585000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2.020777000 -2.117100000 0.331010000

6	2.241354000 -0.061324000 -0.106462000
6	1 521085000 1 110113000 -0 448985000
1	2.027883000 2.020084000 0.687324000
1	2.057885000 2.027787000 -0.087524000
0	0.1490/3000 1.07/38/000 -0.320028000
6	-0.515594000 2.508545000 -1.051991000
6	-1.238948000 2.275081000 -2.221168000
l	-1.381406000 1.337027000 -2.741591000
6	-1.743374000 3.457457000 -2.730272000
1	-2.299504000 3.461464000 -3.660716000
6	-1.517130000 4.634907000 -2.032948000
1	-1.894210000 5.585150000 -2.390364000
6	-0.783956000 4.569131000 -0.859795000
1	-0.585062000 5.471133000 -0.287679000
6	3.715493000 -0.052285000 0.005505000
6	4.500134000 -0.813752000 -0.883436000
6	5 930307000 -0 811660000 -0 751621000
6	6 528641000 -0 037170000 0 235173000
1	7.610476000 0.035295000 0.326819000
1	5 760721000 0 725082000 1 107445000
0	5./09/51000 0./53988000 1.10/443000
0	0.380384000 1.525272000 2.117988000
l	7.469943000 1.526060000 2.179090000
6	5.641185000 2.257155000 2.990368000
1	6.123092000 2.853706000 3.756537000
6	4.227176000 2.231725000 2.906099000
1	3.639808000 2.803521000 3.615604000
6	3.600114000 1.491850000 1.948460000
1	2.518327000 1.477440000 1.904059000
6	4.339197000 0.726960000 1.001021000
7	-2 036007000 -2 196275000 0 290817000
7	-0.586195000 -0.021513000 -0.241597000
, 7	0.280862000 -0.021313000 -0.241377000
/ 9	2 702050000 0 245060000 2 702427000
0	-5./05050000 -0.345000000 -2./0242/000
8	-3.635994000 2.786660000 0.258962000
8	-5.625329000 -0.739449000 1.048384000
17	-1.966697000 -0.032569000 2.602956000
75	-2.743788000 -0.154348000 0.185807000
6	6.711973000 -1.596950000 -1.645131000
6	6.127851000 -2.329358000 -2.632046000
6	3.936761000 -1.574201000 -1.948906000
6	4.720009000 -2.306178000 -2.790609000
1	7.790057000 -1.593626000 -1.522233000
- 1	6 734891000 -2 922012000 -3 306910000
1	2.863760000 -1.558728000 -2.090962000
1	4 264218000 - 2 871406000 - 2 505620000
1	4.204218000 -2.8/1490000 -5.595059000
	Re 0
	S 3 1.00
	30.00000000 0.31780717811
	27.00000000 -0.46492321332
	13.078045684 0.45723641305
	S 1 1.00
	5.0352712861 1.0000000
	S 1 1.00
	1.0482706438 1.0000000
	S 1 100
	0.47708773413 1.000000
	0.47708775415 1.0000000 S 1 100
	S I I.VU 0.12225857255 I.0000000
	0.12223637233 1.0000000
	0.4400/400609D-01 1.0000000
	P 4 1.00
	18.00000000 -0.26890962397D-01
	12.318606250 0.99711498502D-01
	5.3719234505 -0.29289398145
	1.3506646748 0.51466301434
	P 1 1.00
	0.66212816808 1.0000000

P 1 1.00
0.31071385193 1.0000000
0.0/00000000 1.0000000 D 1 100
P I 1.00
0.29651190664D-01 1.0000000
D = 4 + 1.00 7 7252977672 0 82001708556D 01
6.0940443610 = 0.17722258734
1 3871105407 0 55238250602
0.62324027854 0.91980111239
D 1 1.00
0.26517328547 1.0000000
D 1 1.00
0.10321096849 1.0000000
F 1 1.00
0.4898900 1.0000000

c 0
def2TZVP

n 0
def21ZVP

der212.VP ****
al 0
ci u def)TZVD

o ()
def2TZVP

RE 0
RE-ECP 3 60
f potential
1
2 2.50865059 16.44985227
s-f potential
3
2 14.09930510 1038.95157226
2 7.04965250 29.56173830
2 2.50865059 -16.44985227
p-i potential
5 2 10 10771600 220 5/250065
2 10.10771090 539.34530905
2 - 2.50365850 - 24.91309040
d_f notential
3
2 6.84861794 111.69965275
2 3.42430897 12.62432927
2 2.50865059 -16.44985227
Dane do obliczenia wartości HEP
%chk=3A k2 TZVPD 2.chk
#p PBE1PBE gen pseudo=read SCF(maxcycle=900, conver=8)
pop=(full,nbo)
scrf(pcm,solvent=acetonitrile)
3A_k2_def2TZVPD_2_ACN_PBE1PBE
01
6 -3.463536000 -0.233511000 -1.521339000
6 -3.198643000 1.712699000 0.337889000
6 -4.468994000 -0.490944000 0.925437000
6 -2.828054000 -3.273561000 0.328508000

1	-3.887332000	-3.071040000	0.408641000	
6	-2.349031000	-4.567737000	0.359048000	
1	-3.041274000	-5.392239000	0.464145000	
6	-0.984203000	-4.772401000	0.248647000	
1	-0 569455000	-5 772438000	0 261826000	
6	-0.152712000	-3 676932000	0.111891000	
1	-0.132712000	2 821262000	0.002825000	
1	0.912390000	-3.821203000	0.003855000	
0	-0./01363000	-2.401308000	0.094158000	
6	0.10/991000	-1.18/564000	-0.086590000	
6	1.489511000	-1.220381000	0.014428000	
1	1.997647000	-2.140072000	0.265580000	
6	2.216323000	-0.051491000	-0.153731000	
6	1.524390000	1.101109000	-0.486631000	
1	2.038415000	2.034238000	-0.673732000	
6	0 142142000	1 064499000	-0.612282000	
6	-0 526367000	2 296790000	-1 096462000	
6	1 35/370000	2.250750000	2 212702000	
1	-1.55+579000	1 224224000	-2.212702000	
1	-1.303337000	1.524254000	-2./11342000	
6	-1.8/550/000	3.453996000	-2.684518000	
I	-2.516211000	3.463/19000	-3.558205000	
6	-1.557993000	4.628513000	-2.023518000	
1	-1.946427000	5.583652000	-2.353878000	
6	-0.710872000	4.560704000	-0.926598000	
1	-0.432048000	5.463523000	-0.391678000	
6	3.687070000	-0.040098000	0.004567000	
6	4.505704000	-0.668839000	-0.964586000	
6	5.924855000	-0.663854000	-0.793582000	
6	6 484299000	-0.023772000	0.316733000	
1	7 562385000	0.018210000	0.310733000	
1	5 696920000	-0.018210000	1 274075000	
6	5.060659000	1.242012000	1.2/40/3000	
0	6.26/238000	1.243912000	2.385/62000	
I	/.346403000	1.246/22000	2.483993000	
6	5.475469000	1.850301000	3.33996/000	
1	5.931478000	2.336663000	4.193102000	
6	4.086585000	1.828399000	3.209802000	
1	3.467397000	2.294987000	3.965862000	
6	3.487488000	1.212044000	2.127429000	
1	2.407757000	1.197522000	2.057337000	
6	4.264764000	0.600331000	1.127499000	
7	-2 027752000	-2 212107000	0 199478000	
, 7	-0 563988000	-0.047689000	-0.356258000	
7	0.189661000	3 425787000	0.474116000	
0	2 027874000	0.220121000	2 572825000	
0	-3.93/8/4000	-0.280181000	-2.372823000	
ð	-3.321981000	2.811022000	0.432146000	
8 1 –	-5.519585000	-0./06608000	1.342900000	
17	-1.716707000	-0.104749000	2.513618000	
75	-2.726508000	-0.149396000	0.230744000	
6	6.743173000	-1.287608000	-1.750149000	
6	6.188453000	-1.896925000	-2.857372000	
6	3.975300000	-1.282388000	-2.113567000	
6	4.804949000	-1.887820000	-3.038158000	
1	7.817286000	-1.279608000	-1.606783000	
1	6 826870000	-2 374883000	-3 589696000	
1	2 906829000	-1 275672000	-2 28/1771000	
1	2.900829000	-1.2/30/2000	-2.284771000	
1	4.5/5559000	-2.555048000	-3.914398000	
		D C		
		Ke U		
		5 3 1.00	0.51.5011	
	30.000000	0.3178	0/1/811	
	27.0000000	-0.4649	02321332	
	13.0780456	684 0.4572	3641305	
		S 1 1.00		
	5.03527	12861 1.00	00000	
		S 1 1.00		
	1.04827	06438 1.00	00000	
	1.0 1027	S 1 100		
	0 47708'	773413 1.00	00000	
	0.77708	1.00		

S 1 1.00 0.12225857255 1.0000000 S 1 1.00 0.44007400609D-01 1.0000000 P 4 1.00 18.00000000 -0.26890962397D-01 12.318606250 0.99711498502D-01 5.3719234505 -0.29289398145 1.3506646748 0.51466301434 P 1 1.00 0.66212816808 1.0000000 P 1 1.00 0.31071385193 1.0000000 P 1 1.00 0.07000000000 1.0000000 P 1 1.00 0.29651190664D-01 1.0000000 D 4 1.00 0.83901798556D-01 7.7352877672 6.0949443610 -0.17722258734 1.3871105497 0.55238259692 0.62324027854 0.91980111239 D 1 1.00 0.26517328547 1.0000000 D 1 1.00 0.10321096849 1.0000000 F 1 1.00 0.4898900 1.0000000 **** c 0 def2TZVP **** n 0 def2TZVP **** $h \ 0$ def2TZVP **** cl 0 def2TZVP **** o 0 def2TZVP **** RE 0 RE-ECP 3 60 f potential 1 2 2.50865059 16.44985227 s-f potential 3 2 14.09930510 1038.95157226 2 7.04965250 29.56173830 2 2.50865059 -16.44985227 p-f potential 3 10.10771690 2 339.54350965 2 5.05385830 24.91369646 2 2.50865059 -16.44985227 d-f potential 3 2 6.84861794 111.69965275 2 3.42430897 12.62432927 2 2.50865059 -16.44985227

NTO
%OldChk=3A chk
% Chl—2.4 NTO1 akr
/0 LIK- JA INOLULK
PBEIPBE Geom=AllCneck ChkBas Guess=(Read,Only) Density=(Check, Iransition=1) Pop=(NIO, SaveNTO)
spin
%chk=3A tspin TZVPD.chk
#p PBE1PBE gen pseudo=read SCF(maxcvcle=900, conver=8)
POP(FUIL NBO) GEINPUT GEPrint Ion(2/11=1)
SCRE/(PCM Solvent=scetonitia)
Cybe(Ceria)
Cube(spin)
3A_spin_def21ZVPD_ACN_PBE1PBE
03
Koordynaty jak w luminescencji liczonej z trypletu
Re 0
\$ 3,100
30.00000000 0.51780/17811
27.00000000 -0.46492321332
13.078045684 0.45723641305
S 1 1.00
5.0352712861 1.0000000
S 1 1.00
1.0482706438 1.0000000
S 1 1.00
0.47708773413 1.0000000
S 1 100
0.12225857255 1.0000000
S 1 1.00
0.44007400609D-01 1.0000000
P 4 1.00
18.00000000 -0.26890962397D-01
12.318606250 0.99711498502D-01
5.3719234505 -0.29289398145
1.3506646748 0.51466301434
P 1 100
0.66212816808 1.0000000
D 1 100
0.310/1383193 1.0000000
P 1 1.00
0.0700000000 1.0000000
P 1 1.00
0.29651190664D-01 1.0000000
D 4 1.00
7.7352877672 0.83901798556D-01
6.0949443610 -0.17722258734
1 3871105497 0 55238259692
0.62374027854 0.01080111230
0.02324027034 0.91900111239
0.2651/32854/ 1.0000000
D 1 1.00
0.10321096849 1.0000000
F 1 1.00
0.4898900 1.0000000

c 0
def2TZVP

n 0
ш V 1-ФТТТ/D
• • • • • • • • • • • • • • • • • • •
h U
def2TZVP

10. Widma stabilności dla związków 3A, 4A, 6A i 6B.

Rysunek S65. Widma stabilności dla związków 3A, 4A, 6A i 6B.

11. Widma fotostabilności dla związków 3A, 4A, 6A i 6B.

Rysunek S66. Widma fotostabilności dla związków 3A, 4A, 6A i 6B.